Εμφάνιση απλής εγγραφής

dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Αργυρόπουλος, Χρήστος el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Αθανασιάδης, Εμμανουήλ Ι. el
dc.date.accessioned 2015-05-14T15:47:21Z
dc.date.available 2015-05-14T15:47:21Z
dc.date.issued 2015-05-14
dc.identifier.uri http://hdl.handle.net/11400/10379
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://bme.med.upatras.gr/ESBME2006/CD/5th_ESBME_2006_PDFs/Session_5/Daskalakis_full%20paper.pdf en
dc.subject Microarray
dc.subject Gene
dc.subject Μικροσυστοιχίες
dc.subject Γονίδιο
dc.title Wiener-based deconvolution methods for improving the accuracy of spot segmentation in microarray images en
heal.type conferenceItem
heal.classification Technology
heal.classification Biomedical engineering
heal.classification Τεχνολογία
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.language en
heal.access free
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2006
heal.bibliographicCitation Daskalakis, A., Argyropoulos, C., Glotsos, D., Kostopoulos, S., Athanasiadis, E., et al. (2006). Wiener-based deconvolution methods for improving the accuracy of spot segmentation in microarray images. In the 5th European Symposium on Biomedical Engineering. Patras, Greece, 7th-9th July 2006. Available from: http://bme.med.upatras.gr/ESBME2006/CD/5th_ESBME_2006_PDFs/Session_5/Daskalakis_full%20paper.pdf en
heal.abstract Purpose: Microarray experiments are important tools for high throughput gene quantification. Nevertheless, such experiments are confounded by a number of technical factors, which operate at the fabrication, target labelling, and hybridization stages, and result in spatially inhomogeneous noise. Unless these sources of error are addressed, they will propagate throughout the stages of the analysis, leading to inaccurate biological inferences. The aim of this study was to investigate whether image restoration techniques may improve the accuracy of subsequent microarray image analysis steps (i.e. segmentation and gene quantification). Materials and Methods: A public dataset of seven microarrays obtained from the MicroArray Genome Imaging & Clustering Tool (MAGIC) database were used. Each image contained 6400 spots investigating the diauxic shift of Saccharomyces cerevisiae. Restoration was based on the Wiener deconvolution. Subsequently, restored images were processed with the MAGIC tool for semi-automatic griding and segmentation. The influence of the restoration process on the accuracy of spot segmentation was quantitatively assessed by the information theoretic metric of the Kullback-Liebler divergence. Results: Pre-processing based on Wiener deconvolution increased the range of divergence (0.04 – 3.01 bits) and consequently improved the accuracy of subsequent spot segmentation. Conclusion: Information theoretic metrics confirmed the importance of image restoration as a preprocessing step that significantly improved the accuracy of subsequent segmentation, thus leading to more accurate gene quantification. en
heal.fullTextAvailability true
heal.conferenceName European Symposium on Biomedical Engineering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Wiener-based deconvolution methods ...
    Μέγεθος: 66.78Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες