Εμφάνιση απλής εγγραφής

dc.contributor.author Αθανασιάδης, Εμμανουήλ Ι. el
dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-14T16:00:35Z
dc.date.available 2015-05-14T16:00:35Z
dc.date.issued 2015-05-14
dc.identifier.uri http://hdl.handle.net/11400/10382
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://bme.med.upatras.gr/ESBME2006/CD/5th_ESBME_2006_PDFs/Session_5/Athanasiadis_full%20paper.pdf en
dc.subject Microarray image
dc.subject Segmentation
dc.subject Εικόνες μικροσυστοιχιών
dc.subject Τμηματοποίηση
dc.title Comparative evaluation of a gaussian mixture models and a seeded region growing techniques for the segmentation of microarray images en
heal.type conferenceItem
heal.classification Technology
heal.classification Biomedical engineering
heal.classification Τεχνολογία
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.language en
heal.access free
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2006
heal.bibliographicCitation Athanasiadis, E., Daskalakis, A., Spyridonos, P., Glotsos, D., Kalatzis, I., et al. (2006). Comparative evaluation of a gaussian mixture models and a seeded region growing techniques for the segmentation of microarray images. In the 5th European Symposium on Biomedical Engineering. University of Patras, Cultural and Conference Center Patras. Patras, Greece, 7th – 9th July 2006. Available from: http://bme.med.upatras.gr/ESBME2006/CD/5th_ESBME_2006_PDFs/Session_5/Athanasiadis_full%20paper.pdf en
heal.abstract The purpose of the present study was to investigate and compare the segmentation ability of the Gaussian Mixture Models (GMM) against the Seeded Region Growing (SRG) methods in microarray spots segmentation. A simulated microarray image, each containing 200 spots, was produced. An automatic gridding process was developed in MATLAB and it was applied on the images for identifying the centers of spots and their surrounding borders (cells). The GMM, developed in MATLAB and the SRG algorithms, using MAGIC Tool software, were applied to each spot separately for discriminating foreground from background. The segmentation abilities of the GMM and SRG algorithms were evaluated by calculating the segmentation matching factor for each spot. Optimal segmentation results were obtained by the GMM, especially in cases where the spot’s mean intensity value was close to the background. The GMM technique was found to be an accurate algorithm in delineating the boundary of microarray spots and, thus, in discriminating the spot from its surrounding background. en
heal.fullTextAvailability true
heal.conferenceName European Symposium on Biomedical Engineering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Comparative Evaluation Of a ...
    Μέγεθος: 220.3Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες