Εμφάνιση απλής εγγραφής

dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Μπουγιούκος, Παναγιώτης el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Αργυρόπουλος, Χρήστος el
dc.date.accessioned 2015-05-14T16:08:43Z
dc.date.available 2015-05-14T16:08:43Z
dc.date.issued 2015-05-14
dc.identifier.uri http://hdl.handle.net/11400/10386
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://medlab.cc.uoi.gr/itab2006/proceedings/Computational%20Biology%20and%20Bioinformatics/98.pdf en
dc.subject Microarray
dc.subject Gene
dc.subject Μικροσυστοιχίες
dc.subject Γονίδιο
dc.title Improving microarray spots segmentation by k-means driven adaptive image restoration en
heal.type conferenceItem
heal.generalDescription Proceedings en
heal.classification Technology
heal.classification Biomedical engineering
heal.classification Τεχνολογία
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.language en
heal.access free
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2006
heal.bibliographicCitation Daskalakis, A., Cavouras, D., Bougioukos, P., Kostopoulos, S., Argyropoulos, C., et al. (2006). Improving microarray spots segmentation by k-means driven adaptive image restoration. Proceedings of the International Special Topic Conference on Information Technology in Biomedicine. Ioannina, Greece, 26th-28th October 2006. Available from: http://medlab.cc.uoi.gr/itab2006/proceedings/Computational%20Biology%20and%20Bioinformatics/98.pdf en
heal.abstract Complementary DNA microarray experiments are used to study human genome. However, microarray images are corrupted by spatially inhomogeneous noise that deteriorates image and consequently gene expression. An adaptive microarray image restoration technique is developed by suitably combining unsupervised clustering with the restoration filters for boosting the performance of microarray spots segmentation and for improving the accuracy of subsequent gene expression. Microarray images comprised a publicly available dataset of seven images, obtained from the database of the MicroArray Genome Imaging & Clustering Tool website. Each image contained 6400 spots investigating the diauxic shift of Saccharomyces cerevisiae. The adaptive microarray image restoration technique combined 1/a griding algorithm for locating individual cell images, 2/a clustering algorithm, for assessing local noise from the spot’s background, and 3/a wiener restoration filter, for enhancing individual spots. The effect of the proposed technique quantified using a well-known boundary detection algorithm (Gradient Vector Flow snake) and the information theoretic metric of Jeffrey’s divergence. The proposed technique increased the Jeffrey’s metric from 0.0194 bits to 0.0314 bits, while boosted the performance of the employed boundary detection algorithm. Application of the proposed technique on cDNA microarray images resulted in noise suppression and facilitated spot edge detection. en
heal.fullTextAvailability true
heal.conferenceName International Special Topic Conference on Information Technology in Biomedicine en
heal.conferenceItemType poster


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Improving Microarray spots ...
    Μέγεθος: 93.41Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες