Εμφάνιση απλής εγγραφής

dc.contributor.author Μπουγιούκος, Παναγιώτης el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-14T17:23:01Z
dc.date.available 2015-05-14T17:23:01Z
dc.date.issued 2015-05-14
dc.identifier.uri http://hdl.handle.net/11400/10407
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.bme.teiath.gr/medisp/pdfs/BOUGIOUKOS_2007_EpsMso_Proteomic%20Mass%20Spectra.pdf en
dc.subject Classification
dc.subject Biomarker selection
dc.subject Ταξινόμηση
dc.subject Επιλογή βιοδείκτη
dc.title Proteomic mass spectra classification for biomarker discovery in prostate cancer ,employing pattern recognition techniques en
heal.type conferenceItem
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.contributorName Μπεζεριάνος, Αναστάσιος el
heal.language en
heal.access free
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2007
heal.bibliographicCitation Bougioukos, P., Cavouras, D., Daskalakis, A., Kostopoulos, S., Kalatzis, I., et al. (2007). Proteomic mass spectra classification for biomarker discovery in prostate cancer ,employing pattern recognition techniques. In the 2nd International Conference on Experiments/ Process/ System Modelling/ Simulation/ Optimization (2nd IC-EpsMso). Greece, Athens, 4th-7th July 2007. Available from: http://www.bme.teiath.gr/medisp/pdfs/BOUGIOUKOS_2007_EpsMso_Proteomic%20Mass%20Spectra.pdf en
heal.abstract The purpose of the present study was the proposal of novel biomarkers in prostate cancer by analyzing mass spectrometry profiles. The latter were obtained from the National Cancer Institute Clinical Proteomics Database. The proposed method applied first a pre-processing pipeline of smoothing, automatic noise estimation, peak detection, and peak alignment, for improving the choice of information reach biomarkers and, second, a two level hierarchical tree structure classification scheme, where at each level a PNN classifier was optimally designed. At the first level, normal cases were discriminated by the PNN from cases with prostate cancer of PSA≥4 and, at the second level, distinction was made by the PNN between cancerous cases with 4≤PSA<10 and PSA>10. Maximum classification accuracies were 97.7% and 95.6% respectively. These high accuracies were achieved by a set of information reach biomarkers, which included the 2068.8m/z, 4675.6 m/z, and 5824.5 m/z values that have been associated with prostate cancer. en
heal.fullTextAvailability true
heal.conferenceName International Conference on Experiments/ Process/ System Modelling/ Simulation/ Optimization en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Proteomic Mass Spectra Classif ...
    Μέγεθος: 244.7Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες