dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος | el |
dc.contributor.author | Σαρίμβεης, Χαράλαμπος | el |
dc.date.accessioned | 2015-05-14T18:47:17Z | |
dc.date.available | 2015-05-14T18:47:17Z | |
dc.date.issued | 2015-05-14 | |
dc.identifier.uri | http://hdl.handle.net/11400/10420 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.sciencedirect.com | el |
dc.subject | Predictive control | |
dc.subject | Radial basis functions | |
dc.subject | Neural networks (Computer science) | |
dc.subject | μοντέλο πρόβλεψης ελέγχου | |
dc.subject | ακτινική συνάρτηση βάσης | |
dc.subject | νευρωνικά δίκτυα | |
dc.subject | πολλαπλές καταστάσεις ηρεμίας | |
dc.subject | multiple steady states | |
dc.title | Control of processes with multiple steady states using MPC and RBF neural networks | en |
heal.type | journalArticle | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρονική | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρονική | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://skos.um.es/unescothes/C01311 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh92000169 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh2002004691 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh90001937 | |
heal.identifier.secondary | DOI: 10.1016/B978-0-444-53711-9.50140-1 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 2011 | |
heal.bibliographicCitation | Alexandridis, A. & Sarimveis, H. (2011). Control of processes with multiple steady states using MPC and RBF neural networks. "Computer Aided Chemical Engineering". 29: p. 698-702 | en |
heal.abstract | This work presents a new methodology for controlling processes that exhibit multiple steady states. The proposed approach is based on a Model Predictive Control (MPC) framework, where the dynamics of the process are modeled by a Radial Basis Function (RBF) neural network. The innovative non-symmetric fuzzy means algorithm is employed in order to train the RBF network. The proposed methodology is applied to the control of a non-isothermal Continuous Stirred Tank Reactor (CSTR) that exhibits three steady state points. The results show that the proposed controller can drive the CSTR through the entire operating region, including the unstable steady state point, around which the control task is rather challenging. | en |
heal.journalName | Computer Aided Chemical Engineering | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | false |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: