dc.contributor.author | Βασιλάς, Νικόλαος | el |
dc.contributor.author | Περαντώνης, Σταύρος | el |
dc.contributor.author | Χάρου, Ελένη | el |
dc.contributor.author | Βαρουφάκης, Σταύρος | el |
dc.date.accessioned | 2015-05-14T19:26:04Z | |
dc.date.available | 2015-05-14T19:26:04Z | |
dc.date.issued | 2015-05-14 | |
dc.identifier.uri | http://hdl.handle.net/11400/10428 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://users.iit.demokritos.gr/~exarou/PAPERS/groundcovercalgary.pdf | en |
dc.subject | αυτο-οργανούμενοι χάρτες | |
dc.subject | νευρωνικά δίκτυα | |
dc.subject | Ευφυείς τεχνικές | |
dc.subject | Αποδοτική παραγωγή | |
dc.subject | τηλεανίχνευση | |
dc.subject | Self-organizing maps | |
dc.subject | Neural networks | |
dc.subject | Intelligent Techniques | |
dc.subject | Efficient Generation | |
dc.subject | Remote Sensing | |
dc.title | Intelligent techniques for efficient generation of ground cover maps | en |
heal.type | conferenceItem | |
heal.generalDescription | σε έντυπη μορφή στο γραφείο μου | el |
heal.classification | Τεχνολογία | |
heal.classification | Πληροφορική | |
heal.classification | Technology | |
heal.classification | Computer science | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh99004370 | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19808-6 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. | el |
heal.publicationDate | 1998-05 | |
heal.bibliographicCitation | Vassilas, N., Perantonis, S., Charou, E. and Varoufakis, S. (1998) Intelligent Techniques for Efficient Generation of Ground-Cover Maps. 20th Canadaian Symposium on Remote Sensing. pp.255-258. Calgary, Canada. | en |
heal.abstract | In this work, a new methodology based on artificial neural networks (ANN) and indexing techniques is used with the aim to improve memory requirements for storing multisource or multispectral remote sensing (MRS) data and at the same time increase classification speed. This methodology features: a) data quantization using a self-organizing map, b) training set reduction to speed up ANN training, c) fast clustering of prototypes, and d) fast indexed classification. Results obtained for both supervised and unsupervised classification to ground-cover categories using, at no loss of generality, a Landsat TM image, show savings in time and memory without a significant compromise of classification performance. | en |
heal.fullTextAvailability | true | |
heal.conferenceName | 20th Canadaian Symposium on Remote Sensing | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: