dc.contributor.author | Μπέλσης, Πέτρος | el |
dc.contributor.author | Χάλαρης, Ιωάννης | el |
dc.contributor.author | Χάλαρης, Μανώλης | el |
dc.contributor.author | Σκουρλάς, Χρήστος Π. | el |
dc.contributor.author | Τσολακίδης, Αναστάσιος | el |
dc.date.accessioned | 2015-05-15T16:37:55Z | |
dc.date.available | 2015-05-15T16:37:55Z | |
dc.date.issued | 2015-05-15 | |
dc.identifier.uri | http://hdl.handle.net/11400/10465 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com/ | en |
dc.subject | Κανόνες συσχέτισης | |
dc.subject | Τριτοβάθμια εκπαίδευση | |
dc.subject | Φοιτητική διατήρηση | |
dc.subject | Φοιτητική παρέμβαση | |
dc.subject | Εξόρυξη κανόνων | |
dc.subject | Association rules | |
dc.subject | Higher education | |
dc.subject | Student retention | |
dc.subject | Student intervention | |
dc.subject | Rules’ extraction | |
dc.title | The analysis of the legth of studies in higher education based on clustering and the extraction of association rules | en |
heal.type | journalArticle | |
heal.classification | Computer science | |
heal.classification | Higher education | |
heal.classification | Πληροφορική | |
heal.classification | Τριτοβάθμια εκπαίδευση | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.classificationURI | http://skos.um.es/unescothes/C01791 | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | **N/A**-Τριτοβάθμια εκπαίδευση | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Tμήμα Μηχανικών Πληροφορικής Τ.Ε. | el |
heal.publicationDate | 2014-08-25 | |
heal.bibliographicCitation | Belsis, P., Chalaris, I., Chalaris, M., Skourlas, C. and Tsolakidis, A. (2014) The analysis of the legth of studies in higher education based on clustering and the extraction of association rules. Procedia- Social and behavioral sciences, (147). pp.567-575. | el |
heal.abstract | The length of studies of the students who “linger” in Higher Education has not been justified in many countries, and the Higher Education Institutes try to solve the problem using various methods. The problem of students who “linger” in their Departments beyond the six or seven years is seen as complex one, in the Greek Higher Education. Two main alternative methods have been discussed: Giving the students who “linger” a low priority for registration in the laboratory classes, and limiting the number of times of attending laboratory based courses. Eventually, according to the new legislation the Greek Higher Education Institutes must cut off access to the students who “linger” too long. This study focuses on this hard problem. Clustering techniques and the mining of Association rules are used. The results of clustering and the generation of the association rules are based on students’ questionnaires collected in the laboratory classes. Various interesting results and rules are extracted and discussed. | en |
heal.publisher | Elsevier | en |
heal.journalName | Procedia- Social and behavioral sciences | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: