Εμφάνιση απλής εγγραφής

dc.contributor.author Αλεξανδρίδης, Αλέξανδρος Π. el
dc.contributor.author Χονδροδήμα, Ευαγγελία el
dc.contributor.author Ευθυμίου, Ελευθερία - Ειρήνη el
dc.contributor.author Παπαδάκης, Γ. el
dc.contributor.author Βαλλιανάτος, Φίλιππος el
dc.date.accessioned 2015-05-15T19:50:25Z
dc.date.issued 2015-05-15
dc.identifier.uri http://hdl.handle.net/11400/10478
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://ieeexplore.ieee.org/ en
dc.subject Clustering methods
dc.subject Earthquakes
dc.subject Interevent times
dc.subject Neural networks (NNs)
dc.subject Radial basis function (RBF)
dc.subject Μέθοδοι ομαδοποίησης
dc.subject Σεισμοί
dc.subject Νευρωνικά δίκτυα
dc.subject Βάση ακτινικής λειτουργίας
dc.title Large earthquake occurrence estimation based on radial basis function neural networks en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.contributorName Τριάντης, Δήμος Α. el
heal.identifier.secondary DOI: 10.1109/TGRS.2013.2288979
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.publicationDate 2014-09
heal.bibliographicCitation ALEXANDRIDIS, A.P., CHONDRODIMA, E., EFTHIMIOU, E.-I., PAPADAKIS, G., VALLIANATOS, F., et al. (2014). Large earthquake occurrence estimation based on radial basis function neural networks. IEEE Transactions on Geoscience and Remote Sensing. [Online] 52 (9). p.5443-5453. Available from: http://ieeexplore.ieee.org/ en
heal.abstract This paper presents a novel scheme for the estimation of large earthquake event occurrence based on radial basis function (RBF) neural network (NN) models. The input vector to the network is composed of different seismicity rates between main events, which are easy to calculate in a reliable manner. Training of the NNs is performed using the powerful fuzzy means training algorithm, which, in this case, is modified to incorporate a leave-one-out training procedure. This helps the algorithm to account for the limited number of training data, which is a common problem when trying to model earthquakes with data-driven techniques. Additionally, the proposed training algorithm is combined with the Reasenberg clustering technique, which is used to remove aftershock events from the catalog prior to processing the data with the NN. In order to evaluate the performance of the resulting framework, the method is applied on the California earthquake catalog. The results show that the produced RBF model can successfully estimate interevent times between significant seismic events, thus resulting to a predictive tool for earthquake occurrence. A comparison with a different NN architecture, namely, multilayer perceptron networks, highlights the superiority of the proposed approach. en
heal.publisher IEEE en
heal.journalName IEEE Transactions on Geoscience and Remote Sensing en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες