dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.contributor.author | Τριάντης, Δήμος Α. | el |
dc.contributor.author | Σταύρακας, Ηλίας | el |
dc.contributor.author | Στεργιόπουλος, Χαράλαμπος Χ. | el |
dc.date.accessioned | 2015-05-16T10:24:48Z | |
dc.date.available | 2015-05-16T10:24:48Z | |
dc.date.issued | 2015-05-16 | |
dc.identifier.uri | http://hdl.handle.net/11400/10505 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com/ | en |
dc.subject | Nondestructive testing | |
dc.subject | Compressive strength | |
dc.subject | Cement | |
dc.subject | Pressure stimulated currents | |
dc.subject | Micro cracks | |
dc.subject | Neural networks | |
dc.subject | Radial basis functions | |
dc.subject | Fuzzy means | |
dc.subject | Μη καταστροφικές δοκιμές | |
dc.subject | Αντοχή συμπίεσης | |
dc.subject | Τσιμέντο | |
dc.subject | Ρεύματα που ενεργοποιούνται με την πίεση | |
dc.subject | Μικρορωγμές | |
dc.subject | Νευρωνικά δίκτυα | |
dc.subject | Συνάρτηση ακτινικής βάσης | |
dc.subject | Ασαφής μέσα | |
dc.title | A neural network approach for compressive strength prediction in cement-based materials through the study of pressure-stimulated electrical signals | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85092221 | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19808-6 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh2002004691 | |
heal.identifier.secondary | DOI: 10.1016/j.conbuildmat.2011.11.036 | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2012-05 | |
heal.bibliographicCitation | ALEXANDRIDIS, A.P., TRIANTIS, D.A., STAVRAKAS, I. & STERGIOPOULOS, C.C. (2012). A neural network approach for compressive strength prediction in cement-based materials through the study of pressure-stimulated electrical signals. Construction and Building Materials. [Online] 30. p. 294-300. Available from: http://www.elsevier.com/[Accessed 30/12/2011] | en |
heal.abstract | This paper presents a non-destructive method for predicting the compressive strength of cement-based materials by studying the appearance of weak electrical signals at specimens that are under mechanical stress. A series of lab experiments have been conducted in order to record the pressure-stimulated electrical signals in cement mortar specimens. Selected signal characteristics were correlated with the ultimate compressive strength of each specimen through the use of a neural network, employing a special training algorithm that offers increased predictive abilities. Results showed that the ultimate compressive strength can be successfully predicted without destroying the specimen. | en |
heal.publisher | Elsevier | en |
heal.journalName | Construction and Building Materials | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: