Εμφάνιση απλής εγγραφής

dc.contributor.author Δελήμπασης, Κωνσταντίνος Κ. el
dc.contributor.author Κεχρινιώτης, Αριστείδης Ι. el
dc.contributor.author Τσώνος, Χρήστος el
dc.contributor.author Ασημάκης, Νικόλαος Δ. el
dc.date.accessioned 2015-05-17T09:49:12Z
dc.date.available 2015-05-17T09:49:12Z
dc.date.issued 2015-05-17
dc.identifier.uri http://hdl.handle.net/11400/10579
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0169260710000453 en
dc.subject Vessel segmentation
dc.subject Automatic tracking
dc.subject Τμηματοποίηση σκάφους
dc.subject Αυτόματη παρακολούθηση
dc.title Automatic model-based tracing algorithm for vessel segmentation and diameter estimation en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85010114
heal.identifier.secondary doi:10.1016/j.cmpb.2010.03.004
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2010
heal.bibliographicCitation Delibasis, K., Kechriniotis, A., Tsonos, C. and Assimakis, N. (November 2010). Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Computer Methods and Programs in Biomedicine. 100(2). pp. 108-122. Elsevier Ireland Ltd: 2010. Available from: http://www.sciencedirect.com/science/article/pii/S0169260710000453 [Accessed03/04/2010] en
heal.abstract An automatic algorithm capable of segmenting the whole vessel tree and calculate vessel diameter and orientation in a digital ophthalmologic image is presented in this work. The algorithm is based on a parametric model of a vessel that can assume arbitrarily complex shape and a simple measure of match that quantifies how well the vessel model matches a given angiographic image. An automatic vessel tracing algorithm is described that exploits the geometric model and actively seeks vessel bifurcation, without user intervention. The proposed algorithm uses the geometric vessel model to determine the vessel diameter at each detected central axis pixel. For this reason, the algorithm is fine tuned using a subset of ophthalmologic images of the publically available DRIVE database, by maximizing vessel segmentation accuracy. The proposed algorithm is then applied to the remaining ophthalmological images of the DRIVE database. The segmentation results of the proposed algorithm compare favorably in terms of accuracy with six other well established vessel detection techniques, outperforming three of them in the majority of the available ophthalmologic images. The proposed algorithm achieves subpixel root mean square central axis positioning error that outperforms the non-expert based vessel segmentation, whereas the accuracy of vessel diameter estimation is comparable to that of the non-expert based vessel segmentation. en
heal.publisher Elsevier Ireland Ltd en
heal.journalName Computer Methods and Programs in Biomedicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Automatic model-based tracing ...
    Μέγεθος: 887.1Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες