Εμφάνιση απλής εγγραφής

dc.contributor.author Κορφιάτης, Βασίλειος Χρ. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Ντελιμπάσης, Κωνσταντίνος Κ. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.date.accessioned 2015-05-17T21:44:23Z
dc.date.available 2015-05-17T21:44:23Z
dc.date.issued 2015-05-18
dc.identifier.uri http://hdl.handle.net/11400/10635
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0010482513002679# el
dc.subject Classification systems
dc.subject Machine learning
dc.subject Polycythemia
dc.subject LM–FM wrapper
dc.subject LM-FM περιτύλιγμα
dc.subject Συστήματα ταξινόμησης
dc.subject Μηχανή μάθησης
dc.subject Multiclass SVM
dc.subject Maximum output information
dc.subject Η μέγιστη πληροφορία εξόδου
dc.subject Πολυκυτταραιμία
dc.title A classification system based on a new wrapper feature selection algorithm for the diagnosis of primary and secondary polycythemia en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://skos.um.es/unescothes/C00619
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85079324
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85104610
heal.identifier.secondary doi:10.1016/j.compbiomed.2013.09.016
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2013-12
heal.bibliographicCitation Korfiatis, V. C., Asvestas, P. A., Delibasis, K. K. and Matsopoulos, G. K. (2013). A classification system based on a new wrapper feature selection algorithm for the diagnosis of primary and secondary polycythemia. "Computers in Biology and Medicine", 43(12), December 2013. pp. 2118-2126. Available from: http://www.sciencedirect.com/science/article/pii/S0010482513002679#. [Accessed 28/09/2013] en
heal.abstract Primary and Secondary Polycythemia are diseases of the bone marrow that affect the blood's composition and prohibit patients from becoming blood donors. Since these diseases may become fatal, their early diagnosis is important. In this paper, a classification system for the diagnosis of Primary and Secondary Polycythemia is proposed. The proposed system classifies input data into three classes; Healthy, Primary Polycythemic (PP) and Secondary Polycythemic (SP) and is implemented using two separate binary classification levels. The first level performs the Healthy/non-Healthy classification and the second level the PP/SP classification. To this end, a novel wrapper feature selection algorithm, called the LM–FM algorithm, is presented in order to maximize the classifier's performance. The algorithm is comprised of two stages that are applied sequentially: the Local Maximization (LM) stage and the Floating Maximization (FM) stage. The LM stage finds the best possible subset of a fixed predefined size, which is then used as an input for the next stage. The FM stage uses a floating size technique to search for an even better solution by varying the initially provided subset size. Then, the Support Vector Machine (SVM) classifier is used for the discrimination of the data at each classification level. The proposed classification system is compared with various well-established feature selection techniques such as the Sequential Floating Forward Selection (SFFS) and the Maximum Output Information (MOI) wrapper schemes, and with standalone classification techniques such as the Multilayer Perceptron (MLP) and SVM classifier. The proposed LM–FM feature selection algorithm combined with the SVM classifier increases the overall performance of the classification system, scoring up to 98.9% overall accuracy at the first classification level and up to 96.6% at the second classification level. Moreover, it provides excellent robustness regardless of the size of the input feature subset used. en
heal.journalName Computers in Biology and Medicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0010482513002679-main.pdf
    Μέγεθος: 708.5Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες