Εμφάνιση απλής εγγραφής

dc.contributor.author Πάτσης, Γεώργιος Π. el
dc.contributor.author Γλέζος, Νίκος Μ. el
dc.contributor.author Ράπτης, Ιωάννης Α. el
dc.contributor.author Βαλαμόντες, Ευάγγελος Σ. el
dc.date.accessioned 2015-05-19T09:07:24Z
dc.date.available 2015-05-19T09:07:24Z
dc.date.issued 2015-05-19
dc.identifier.uri http://hdl.handle.net/11400/10728
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.aip.org/ en
dc.subject Gelation process
dc.subject Molecular model
dc.subject Surface roughness
dc.subject Διαδικασία σχηματισμού γέλης
dc.subject Μοριακό μοντέλο
dc.subject Επιφανειακή τραχύτητα
dc.title Simulation of roughness in chemically amplified resists using percolation theory en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85130724
heal.identifier.secondary ISSN: 10711023
heal.language en
heal.access campus
heal.publicationDate 1999
heal.bibliographicCitation PATSIS, G.P., GLEZOS, N.M., RAPTIS, I.A. & VALAMONTES, E.S. (1999). Simulation of roughness in chemically amplified resists using percolation theory. Journal of Vacuum Science and Technology B. [online] 17 (6). p. 3367-3370. Available from: http://www.aip.org/ en
heal.abstract A simulator for e-beam exposure and development (SELID) is combined with molecular modeling in order to investigate the various side effects of the gelation process in the case of chemically amplified resists (CARs). The procedure is demonstrated in the case of the negative tone epoxy resist but the method is equally applicable for other resist systems (positive and negative tone) and development mechanisms. A conventional resist simulator is not sufficient for the description of characteristics related to the detailed gel structure of the resist film and it needs to be combined with a molecular model. Molecular modeling is a suitable method for the simulation of the microscopic changes occurring during the post-exposure bake and development processes in the case of CARs. Macroscopic feature changes such as free volume size, cluster formation, and surface roughness can be effectively described using percolation theory. In order to construct a molecular model of a complex resist system a 3D square lattice is considered. The lattice size is equal to the mean radius of the spherical volume occupied by a monomer, in our case about 1 nm. The lattice is filled with the polymer chains by a random walk process and the photoacid generator is randomly distributed in the lattice according to its percent content in the actual material. In the case of an actual resist pattern exposure, SELID provides the energy deposition profile after e-beam exposure. The deposited energy stored into each cell of the lattice induces acid generation and subsequent reactions. Reaction progress is simulated using the molecular model. Using the above process it has been possible to reproduce the actual experimental contrast curves and to simulate line edge roughness. en
heal.publisher American Institute of Physics en
heal.journalName Journal of Vacuum Science and Technology B en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες