dc.contributor.author | Γλέζος, Νίκος | el |
dc.contributor.author | Πάτσης, Γεώργιος | el |
dc.contributor.author | Ράπτης, Ιωάννης | el |
dc.contributor.author | Αργείτης, Παναγιώτης | el |
dc.contributor.author | Gentili, Monica | el |
dc.date.accessioned | 2015-05-20T18:31:31Z | |
dc.date.available | 2015-05-20T18:31:31Z | |
dc.date.issued | 2015-05-20 | |
dc.identifier.uri | http://hdl.handle.net/11400/10797 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://scitation.aip.org | en |
dc.source | http://scitation.aip.org/content/avs/journal/jvstb/14/6/10.1116/1.588585 | en |
dc.subject | Diffusion | |
dc.subject | Negative resistance | |
dc.subject | Acids | |
dc.subject | Applied physics | |
dc.subject | Διάχυση | |
dc.subject | Αρνητική αντίσταση | |
dc.subject | Οξέα | |
dc.subject | Εφαρμοσμένη φυσική | |
dc.title | Application of a reaction‐diffusion model for negative chemically amplified resists to determine electron‐beam proximity correction parameters | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Electronics | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρονική | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85042383 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρονική | |
heal.contributorName | Grella, L. | en |
heal.identifier.secondary | DOI: 10.1116/1.588585 | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 1996-08-12 | |
heal.bibliographicCitation | Glezos, N., Patsis, G., Raptis, I., Argitis, P., Gentili, M. et al. (1996) Application of a reaction‐diffusion model for negative chemically amplified resists to determine electron‐beam proximity correction parameters. "Journal of Vacuum Science & Technology B", 14 (6) | en |
heal.abstract | The method of single pixel exposures is applied for the determination of aciddiffusion effects in negative chemically amplified resists. The wide range of crosslink density values contained in a single dot is used to determine nonlinear diffusion parameters. A reaction‐diffusion model is developed where the diffusion coefficient D is a function of the crosslink density Θ. This function D(Θ) is evaluated for a given range of postexposure bake parameters in each case and the information obtained is used for proximity correction, also using the e‐beam lithography simulation tool LITHOS. In order to test the model under different circumstances, two resists are studied, namely, the commercially available SAL‐601 and the experimental epoxy novolac resistEPR. The diffusion coefficient is evaluated for each resist under the best processing conditions. The proximity correction procedure is fully demonstrated in the case of SAL‐601. | en |
heal.publisher | American Vacuum Society | en |
heal.journalName | Journal of Vacuum Science & Technology B | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: