Εμφάνιση απλής εγγραφής

dc.contributor.author Στεφανάκης, Ιωάννης Μ. el
dc.contributor.author Αναστασόπουλος, Γεώργιος Κ. el
dc.contributor.author Ηλιάδης, Λάζαρος Σ. el
dc.date.accessioned 2015-05-21T08:09:46Z
dc.date.available 2015-05-21T08:09:46Z
dc.date.issued 2015-05-21
dc.identifier.uri http://hdl.handle.net/11400/10820
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0925231212007552 el
dc.subject Vector filtering
dc.subject Φιλτράρισμα διάνυσμα
dc.subject Color segmentation
dc.subject Χρώμα τμηματοποίησης
dc.subject Self-Organizing Feature Maps (SOFM)
dc.subject Αυτο-οργάνωση Μελλοντικών Χαρτών
dc.subject Medical imaging
dc.subject Ιατρική απεικόνιση
dc.title A Self-Organizing Feature Map (SOFM) model based on aggregate-ordering of local color vectors according to block similarity measures en
heal.type journalArticle
heal.generalDescription Δημοσιευμένο και στο: Timely Neural Networks Applications in Engineering — Selected Papers from the 12th EANN International Conference. el
heal.classification Technology
heal.classification Engineering
heal.classification Τεχνολογία
heal.classification Μηχανική
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://zbw.eu/stw/descriptor/19795-3
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Μηχανική
heal.identifier.secondary doi:10.1016/j.neucom.2012.09.010
heal.language en
heal.access campus
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2013-05
heal.bibliographicCitation Stephanakis, I. M., Anastassopoulos , G. C. and Iliadis, L. S. (2013). A Self-Organizing Feature Map (SOFM) model based on aggregate-ordering of local color vectors according to block similarity measures. Timely Neural Networks Applications in Engineering — Selected Papers from the 12th EANN International Conference, 2011. "Neurocomputing", vol.107, May 2013. pp. 97–107. Available from: http://www.sciencedirect.com/science/article/pii/S0925231212007552. [Accessed 08/11/2012] en
heal.abstract Self-Organizing Feature Maps (SOFMs) are extensively used for dimensionality reduction and rendering of inherent data structures. A novel model of a SOFM based on the notion of aggregate/reduced ordering (R-ordering) of vector sets is proposed and applied to the segmentation of color images. The so-called Cross-Order Distance Matrix is defined in order to measure the similarity between local histograms corresponding to ordered sets of color vectors. Color images are regarded as two-dimensional (2-D) vector fields. Basic image processing algorithms are modified since color is represented as a vector instead of a scalar gray level variable. Operators utilizing several distance and similarity measures are adopted in order to quantify the color distribution within a sliding window. The proposed window-based SOFM uses sets of one, two and more color vectors in order to approximate local color distributions within sliding windows. Each set represents a separate node of the SOFM that is trained according to a sequence of ordered input sets of color vectors. A 3×3 window is used to capture color components in uniform color space (L⁎u⁎v⁎). The color vectors within the sliding window are R-ordered. The neuron featuring the smallest aggregated distance (similarity) is activated during training. Segmentation results suggest that clustered nodes represent populations of pixels in rather compact segments of the images featuring similar texture. en
heal.journalName Neurocomputing en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0925231212007552-main.pdf
    Μέγεθος: 2.903Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες