dc.contributor.author | Ασημάκης, Νικόλαος Δ. | el |
dc.contributor.author | Αδάμ, Μαρία | el |
dc.contributor.author | Τριανταφύλλου, Χρυσαυγή | el |
dc.date.accessioned | 2015-05-21T10:02:57Z | |
dc.date.available | 2015-05-21T10:02:57Z | |
dc.date.issued | 2015-05-21 | |
dc.identifier.uri | http://hdl.handle.net/11400/10826 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.sciencedirect.com/science/article/pii/S0165168412003349# | el |
dc.subject | Random Walk | |
dc.subject | Riccati equation | |
dc.subject | Golden section | |
dc.subject | Lainiotis filter | |
dc.subject | Λαϊνιώτης φίλτρο | |
dc.subject | Εξίσωσης Riccati | |
dc.subject | Χρυσή τομή | |
dc.subject | Fibonacci sequence | |
dc.subject | Fibonacci ακολουθία | |
dc.title | Lainiotis filter, golden section and fibonacci sequence | en |
heal.type | journalArticle | |
heal.classification | Electrical engineering | |
heal.classification | Mathematics | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classification | Μαθηματικά | |
heal.classificationURI | http://skos.um.es/unescothes/C01311 | |
heal.classificationURI | http://zbw.eu/stw/thsys/70269 | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | **N/A**-Μαθηματικά | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19572-2 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85113861 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85055763 | |
heal.identifier.secondary | doi:10.1016/j.sigpro.2012.09.014 | |
heal.language | en | |
heal.access | free | |
heal.publicationDate | 2013-04 | |
heal.bibliographicCitation | Assimakis, N., Adam, M. and Triantafillou, C. (2013). Lainiotis filter, golden section and fibonacci sequence. "Signal Processing", 93(4), April 2013. pp. 721–730. Available from: http://www.sciencedirect.com/science/article/pii/S0165168412003349#. [Accessed 03/10/2012] | en |
heal.abstract | The relation between the discrete time Lainiotis filter on the one side and the golden section and the Fibonacci sequence on the other is established. As far as the random walk system is concerned, the relation between the Lainiotis filter and the golden section is derived through the Riccati equation since the steady state estimation error covariance is related to the golden section. The relation between the closed form of the Lainiotis filter and the Fibonacci sequence is also derived. It is shown that the steady state Lainiotis filter computes the state estimate using a linear combination of the previous estimate and of the current measurement with coefficients related to the golden section. A Finite Impulse Response (FIR) implementation of the steady state Lainiotis filter is also proposed, where the filter computes the state estimate as a linear combination of a well-defined set of the last measurements with coefficients which are powers of the golden section. Finally, the scalar generic stochastic dynamic system is considered and the relation between its parameters and the golden section is investigated. | en |
heal.journalName | Signal Processing | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: