Εμφάνιση απλής εγγραφής

dc.contributor.author Παπαγεωργίου, Ελπινίκη Ι. el
dc.contributor.author Αγγελοπούλου, Κατερίνα Δ. el
dc.contributor.author Γέμτος, Θεοφάνης Α. el
dc.contributor.author Νάνος, Γιώργος Δ. el
dc.date.accessioned 2015-05-21T19:13:25Z
dc.date.available 2015-05-21T19:13:25Z
dc.date.issued 2015-05-21
dc.identifier.uri http://hdl.handle.net/11400/10854
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0168169912002657# el
dc.subject Modeling
dc.subject Knowledge representation
dc.subject Fuzzy sets
dc.subject Decision making
dc.subject Malus domestica
dc.subject Fuzzy Cognitive Maps
dc.subject Μοντελοποίηση
dc.subject Αναπαράσταση γνώσης
dc.subject Ασαφή σύνολα
dc.subject Λήψη αποφάσης
dc.title Yield prediction in apples using Fuzzy Cognitive Map learning approach en
heal.type journalArticle
heal.classification Technology
heal.classification Computer science
heal.classification Τεχνολογία
heal.classification Πληροφορική
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://skos.um.es/unescothes/C00750
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Πληροφορική
heal.keywordURI http://id.loc.gov/authorities/childrensSubjects/sj96005954
heal.keywordURI http://zbw.eu/stw/descriptor/29233-4
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85052627
heal.keywordURI http://skos.um.es/unescothes/C00984
heal.keywordURI http://lod.nal.usda.gov/11312
heal.identifier.secondary doi:10.1016/j.compag.2012.11.008
heal.language en
heal.access campus
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. el
heal.publicationDate 2013-02
heal.bibliographicCitation Papageorgiou, E. I., Aggelopoulou, K. D., Gemtos, T. A. and Nanos, G. D. (2013). Yield prediction in apples using Fuzzy Cognitive Map learning approach. "Computers and Electronics in Agriculture", vol. 91, February 2013. pp. 19–29. Available from: http://www.sciencedirect.com/science/article/pii/S0168169912002657#. [Accessed 22/12/2012] en
heal.abstract This work investigates the yield modeling and prediction process in apples (cv. Red Chief) using the dynamic influence graph of Fuzzy Cognitive Maps (FCMs). FCMs are ideal causal cognition tools for modeling and simulating dynamic systems. They gained momentum due to their simplicity, flexibility to model design, adaptability to different situations, and easiness of use. In general, they model the behavior of a complex system, have inference capabilities and can be used to predict new knowledge. In this work, a data driven non-linear FCM learning approach was chosen to categorize yield in apples, where very few decision making techniques were investigated. Through the proposed methodology, FCMs were designed and developed to represent experts’ knowledge for yield prediction and crop management. The developed FCM model consists of nodes linked by directed edges, where the nodes represent the main soil factors affecting yield, [such as soil texture (clay and sand content), soil electrical conductivity (EC), potassium (K), phosphorus (P), organic matter (OM), calcium (Ca) and zinc (Zn) contents], and the directed edges show the cause-effect (weighted) relationships between the soil properties and yield. The main purpose of this study was to classify apple yield using an efficient FCM learning algorithm, the non-linear Hebbian learning, and to compare it with the conventional FCM tool and benchmark machine learning algorithms. All algorithms have been implemented in the same data set of 56 cases measured in 2005 in an apple orchard located in central Greece. The analysis showed the superiority of the FCM learning approach in yield prediction. en
heal.journalName Computers and Electronics in Agriculture en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0168169912002657-main.pdf
    Μέγεθος: 855.9Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες