dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.contributor.author | Στογιάννος, Μάριος | el |
dc.contributor.author | Λουκίδης, Ανδρόνικος | el |
dc.contributor.author | Νίνος, Κωνσταντίνος Δ. | el |
dc.contributor.author | Ζέρβα, Ευάγγελος | el |
dc.date.accessioned | 2015-05-23T11:02:16Z | |
dc.date.issued | 2015-05-23 | |
dc.identifier.uri | http://hdl.handle.net/11400/10962 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://ieeexplore.ieee.org/ | en |
dc.subject | Direct control | |
dc.subject | Indirect control | |
dc.subject | Model predictive control | |
dc.subject | Neurocontrol | |
dc.subject | Radial basis function | |
dc.subject | Άμεσος έλεγχος | |
dc.subject | Έμμεσος έλεγχος | |
dc.subject | Μοντέλο πρόβλεψης ελέγχου | |
dc.subject | Νευροέλεγχος | |
dc.subject | Ακτινική συνάρτηση βάσης | |
dc.title | Direct versus indirect neural control based on radial basis function networks | en |
heal.type | conferenceItem | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.contributorName | Σαρίμβεης, Χαράλαμπος | el |
heal.identifier.secondary | DOI: 10.1109/CEEC.2014.6958561 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.publicationDate | 2014 | |
heal.bibliographicCitation | Alexandridis, A.P., Stogiannos, M., Loukidis, A., Ninos, K.D., Zervas, E., et al. (2014) Direct versus indirect neural control based on radial basis function networks, In: Proceedings of the 6th Computer Science and Electronic Engineering Conference, CEEC 2014. University of EssexColchester, United Kingdom. 25-26 September, 2014. [online]. p. 91-96, 6958561. Available from: http://ieeexplore.ieee.org/ | en |
heal.abstract | This work presents a comparison between direct and indirect neural control methods based on the radial basis function (RBF) architecture. As far as direct control schemes are concerned, a novel direct inverse neural RBF controller taking into account the applicability domain criterion (INCAD) is utilized. model predictive control (MPC) formulation based on RBF networks is tested as an example of indirect method. The performances of the two control schemes are evaluated and compared on a highly nonlinear control problem, namely control of a continuous stirred tank reactor (CSTR) with multiple stable and unstable steady states. Results show that the INCAD controller is able to provide satisfactory performance, while performing almost instant calculation of the control actions. MPC on the other hand, outperforms the INCAD in terms of speed of responses, due to the built-in optimization capability; however, the lengthy procedure of solving online the optimization problem impedes the practical use of MPC on systems with fast dynamics. | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | false | |
heal.conferenceName | 6th Computer Science and Electronic Engineering Conference, CEEC 2014 | en |
heal.conferenceItemType | poster |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: