Εμφάνιση απλής εγγραφής

dc.contributor.author Froelich, Wojciech en
dc.contributor.author Παπαγεωργίου, Ελπινίκη Ι. el
dc.contributor.author Σαμαρίνας, Μιχαήλ el
dc.contributor.author Σκριάπας, Κωνσταντίνος el
dc.date.accessioned 2015-05-24T12:40:08Z
dc.date.available 2015-05-24T12:40:08Z
dc.date.issued 2015-05-24
dc.identifier.uri http://hdl.handle.net/11400/11037
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S1568494612000610 en
dc.subject Prediction
dc.subject Prostate cancer
dc.subject Πρόληψη
dc.subject Καρκίνος του προστάτη
dc.title Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer en
heal.type journalArticle
heal.generalDescription Theoretical issues and advanced applications on Fuzzy Cognitive Maps en
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary doi:10.1016/j.asoc.2012.02.005
heal.language en
heal.access campus
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. el
heal.publicationDate 2012
heal.bibliographicCitation Froelich, W., Papageorgiou, E., Samarinas, M. and Skriapas, K. (December 2012). Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer. Applied Soft Computing. 12(12). pp. 3810-3817. Elsevier B.V.: 2012. Available from: http://www.sciencedirect.com/science/article/pii/S1568494612000610 [Accessed 06/03/2012] en
heal.abstract The prediction of multivariate time series is one of the targeted applications of evolutionary fuzzy cognitive maps (FCM). The objective of the research presented in this paper was to construct the FCM model of prostate cancer using real clinical data and then to apply this model to the prediction of patient's health state. Due to the requirements of the problem state, an improved evolutionary approach for learning of FCM model was proposed. The focus point of the new method was to improve the effectiveness of long-term prediction. The evolutionary approach was verified experimentally using real clinical data acquired during a period of two years. A preliminary pilot-evaluation study with 40 men patient cases suffering with prostate cancer was accomplished. The in-sample and out-of-sample prediction errors were calculated and their decreased values showed the justification of the proposed approach for the cases of long-term prediction. The obtained results were approved by physicians emerging the functionality of the proposed methodology in medical decision making. en
heal.publisher Elsevier B.V. en
heal.journalName Applied Soft Computing en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Application of evolutionary fuzzy ...
    Μέγεθος: 411.1Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες