dc.contributor.author | Froelich, Wojciech | en |
dc.contributor.author | Παπαγεωργίου, Ελπινίκη Ι. | el |
dc.contributor.author | Σαμαρίνας, Μιχαήλ | el |
dc.contributor.author | Σκριάπας, Κωνσταντίνος | el |
dc.date.accessioned | 2015-05-24T12:40:08Z | |
dc.date.available | 2015-05-24T12:40:08Z | |
dc.date.issued | 2015-05-24 | |
dc.identifier.uri | http://hdl.handle.net/11400/11037 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.sciencedirect.com/science/article/pii/S1568494612000610 | en |
dc.subject | Prediction | |
dc.subject | Prostate cancer | |
dc.subject | Πρόληψη | |
dc.subject | Καρκίνος του προστάτη | |
dc.title | Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer | en |
heal.type | journalArticle | |
heal.generalDescription | Theoretical issues and advanced applications on Fuzzy Cognitive Maps | en |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.identifier.secondary | doi:10.1016/j.asoc.2012.02.005 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. | el |
heal.publicationDate | 2012 | |
heal.bibliographicCitation | Froelich, W., Papageorgiou, E., Samarinas, M. and Skriapas, K. (December 2012). Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer. Applied Soft Computing. 12(12). pp. 3810-3817. Elsevier B.V.: 2012. Available from: http://www.sciencedirect.com/science/article/pii/S1568494612000610 [Accessed 06/03/2012] | en |
heal.abstract | The prediction of multivariate time series is one of the targeted applications of evolutionary fuzzy cognitive maps (FCM). The objective of the research presented in this paper was to construct the FCM model of prostate cancer using real clinical data and then to apply this model to the prediction of patient's health state. Due to the requirements of the problem state, an improved evolutionary approach for learning of FCM model was proposed. The focus point of the new method was to improve the effectiveness of long-term prediction. The evolutionary approach was verified experimentally using real clinical data acquired during a period of two years. A preliminary pilot-evaluation study with 40 men patient cases suffering with prostate cancer was accomplished. The in-sample and out-of-sample prediction errors were calculated and their decreased values showed the justification of the proposed approach for the cases of long-term prediction. The obtained results were approved by physicians emerging the functionality of the proposed methodology in medical decision making. | en |
heal.publisher | Elsevier B.V. | en |
heal.journalName | Applied Soft Computing | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: