Εμφάνιση απλής εγγραφής

dc.contributor.author Καλησπεράκης, Ηλίας el
dc.contributor.author Καρράς, Γιώργος el
dc.contributor.author Γραμματικόπουλος, Λάζαρος el
dc.date.accessioned 2015-05-24T15:36:28Z
dc.date.available 2015-05-24T15:36:28Z
dc.date.issued 2015-05-24
dc.identifier.uri http://hdl.handle.net/11400/11039
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source www.isprs.org en
dc.subject Calibration
dc.subject Epipolar geometry
dc.subject Διαμέτρηση
dc.subject Επιπολική γεωμετρία
dc.subject Τρισδιάστατα μοντέλα
dc.title 3D aspects of 2D epipolar geometry en
heal.type journalArticle
heal.classification Topography
heal.classification Geometry
heal.classification Τοπογραφία
heal.classification Γεωμετρία
heal.classificationURI http://skos.um.es/unescothes/C04078
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85054133
heal.classificationURI **N/A**-Τοπογραφία
heal.classificationURI **N/A**-Γεωμετρία
heal.language en
heal.access free
heal.publicationDate 2006
heal.bibliographicCitation Kalisperakis, I., Karras, G. and Grammatikopoulos, L. (2006) 3D aspects of 2D epipolar geometry. "Photogrammetry, Remote Sensing & Spatial Information Sciences", 26 (3), p.255-259 en
heal.abstract Relative orientation in a stereo pair (establishing 3D epipolar geometry) is generally described as a rigid body transformation, with one arbitrary translation component, between two formed bundles of rays. In the uncalibrated case, however, only the 2D projective pencils of epipolar lines can be established from simple image point homologies. These may be related to each other in infinite variations of perspective positions in space, each defining different camera geometries and relative orientation of image bundles. It is of interest in photogrammetry to also approach the 3D image configurations embedded in 2D epipolar geometry in a Euclidean (rather than a projective-algebraic) framework. This contribution attempts such an approach initially in 2D to propose a parameterization of epipolar geometry; when fixing some of the parameters, the remaining ones correspond to a ‘circular locus’ for the second epipole. Every point on this circle is related to a specific direction on the plane representing the intersection line of image planes. Each of these points defines, in turn, a circle as locus of the epipole in space (to accommodate all possible angles of intersection of the image planes). It is further seen that knowledge of the lines joining the epipoles with the respective principal points suffices for establishing the relative position of image planes and the direction of the base line in model space; knowledge of the actual position of the principal points allows full relative orientation and camera calibration of central perspective cameras. Issues of critical configuration are also addressed. Possible future tasks include study of different a priori knowledge as well as the case of the image triplet. en
heal.journalName Photogrammetry, Remote Sensing & Spatial Information Sciences en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες