Εμφάνιση απλής εγγραφής

dc.contributor.author Κεχριώτης, Γιώργος Ι. el
dc.contributor.author Ζέρβας, Ευάγγελος el
dc.contributor.author Μανωλάκος, Ηλίας Σ. el
dc.date.accessioned 2015-05-25T11:45:04Z
dc.date.issued 2015-05-25
dc.identifier.uri http://hdl.handle.net/11400/11117
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://ieeexplore.ieee.org/ en
dc.subject Data communication systems
dc.subject Signal modulations
dc.subject Neural networks
dc.subject Συστήματα επικοινωνίας δεδομένων
dc.subject Διαμορφώσεις σήματος
dc.subject Νευρωνικά δίκτυα
dc.title Using recurrent neural networks for adaptive communication channel equalization en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.identifier.secondary DOI: 10.1109/72.279190
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.publicationDate 1994-03
heal.bibliographicCitation KECHRIOTIS, G.I., ZERVAS, E. & MANOLAKOS, E.S. (1994). Using recurrent neural networks for adaptive communication channel equalization. IEEE Transactions on Neural Networks. [online] 5 (2). p. 267-278. Available from: http://ieeexplore.ieee.org/ en
heal.abstract Recently, nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive Recurrent Neural Network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and non-linear channel equalization cases. en
heal.publisher IEEE en
heal.journalName IEEE Transactions on Neural Networks en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες