dc.contributor.author | Κονταργύρη, Βασιλική | el |
dc.contributor.author | Κονταξής, Παναγιώτης | el |
dc.contributor.author | Γιαλκέτση, Α. | el |
dc.contributor.author | Τσεκούρας, Γιώργος | el |
dc.date.accessioned | 2015-05-25T17:24:19Z | |
dc.date.available | 2015-05-25T17:24:19Z | |
dc.date.issued | 2015-05-25 | |
dc.identifier.uri | http://hdl.handle.net/11400/11136 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.wseas.org | en |
dc.subject | Ενέργεια | |
dc.subject | High voltage insulators | |
dc.subject | Μονωτές υψηλής τάσης | |
dc.subject | Τεχνητά δίκτυα νεύρων | |
dc.subject | Αλγόριθμοι | |
dc.subject | Algorithms | |
dc.title | Comparison between artificial neural networks algorithms for the estimation of the flashover voltage on insulators | en |
heal.type | conferenceItem | |
heal.classification | Technology | |
heal.classification | Electronics | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρονική | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85042383 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρονική | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2008-05-02 | |
heal.bibliographicCitation | Kontargyri, V., Tsekouras, G., Gialketsi, A. and Kontaxis, P. (2008) Comparison between artificial neural networks algorithms for the estimation of the flashover voltage on insulators. In 9th WSEAS International Conference on Neural Networks. 2nd to 4th May 2008. Sofia | en |
heal.abstract | This work attempts to apply Artificial Neural Networks in order to estimate the critical flashover voltage on polluted insulators. First, an ANN was constructed in MATLAB and has been trained with several MATLAB training functions. Then, an ANN was constructed in FORTRAN using an adaptive algorithm, in which the parameters of momentum and learning rate changed during the learning procedure, in order to optimize the training process. In each case the Artificial Neural Network uses as input variables the following characteristics of the insulator: the diameter, the height, the creepage distance, the form factor and the equivalent salt deposit density and estimates the critical flashover voltage. | en |
heal.fullTextAvailability | true | |
heal.conferenceName | 9th WSEAS International Conference on Neural Networks | en |
heal.conferenceItemType | poster |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: