Εμφάνιση απλής εγγραφής

dc.contributor.author Τσεκούρας, Γιώργος el
dc.contributor.author Μαστοράκης, Ν. el
dc.contributor.author Κανέλλος, Φ. el
dc.contributor.author Κονταργύρη, Βασιλική el
dc.contributor.author Τσιρέκης, Κωνσταντίνος el
dc.date.accessioned 2015-05-25T18:17:09Z
dc.date.available 2015-05-25T18:17:09Z
dc.date.issued 2015-05-25
dc.identifier.uri http://hdl.handle.net/11400/11141
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.wseas.org en
dc.subject Artificial neural networks
dc.subject Resampling technique
dc.subject Short-term load forecasting
dc.subject Τεχνητά δίκτυα νεύρων
dc.subject Τεχνική αναδειγματοληψίας
dc.subject Βραχυπρόθεσμη πρόβλεψη φορτίου
dc.title Short term load forecasting in Greek power system using ANNs en
heal.type conferenceItem
heal.secondaryTitle confidence interval estimation using a novel re-sampling technique with corrective factor en
heal.classification Technology
heal.classification Energy
heal.classification Τεχνολογία
heal.classification Ενέργεια
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://id.loc.gov/authorities/names/n42028321
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ενέργεια
heal.contributorName Καρανάσιου, Ι. el
heal.contributorName Ηλίας, Χρήστος el
heal.contributorName Σαλής, Α. el
heal.contributorName Κονταξής, Παναγιώτης el
heal.contributorName Γιαλκέτση, Α. el
heal.language en
heal.access campus
heal.publicationDate 2010-12-29
heal.bibliographicCitation Tsekouras, G., Mastorakis, N., Kanellos, F., Kontargyri, V., Tsirekis, C. et al. (2010) Short term load forecasting in Greek power system using ANNs: Confidence interval estimation using a novel re-sampling technique with corrective factor. In 9th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing. 29th to 31st December 2010. Athens en
heal.abstract The modern methods for power system load prediction are usually based on Artificial Neural Networks (ANN), which present satisfactory results. However, the estimation of the confidence intervals can not be applied directly, unlike to the classical forecasting methods. One of the most commonly used methods is the re-sampling technique, which calculates the respective confidence interval based on the training data set. The limits of the training set confidence interval are also applied in the case of the real prediction giving satisfactory but slightly underestimated results. The targets of this paper are: (1) to apply the basic re-sampling method for the short term forecasting of the next day load in the interconnected Greek power system using an optimized ANN proving the aforementioned disadvantage and (2) to propose a modified re-sampling technique using a proper corrective multiplication factor. Finally, the next day load demand of the test set is estimated using the best ANN structure and the modified confidence intervals. en
heal.fullTextAvailability true
heal.conferenceName 9th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing en
heal.conferenceItemType poster


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες