Εμφάνιση απλής εγγραφής

dc.contributor.author Τσεκούρας, Γιώργος el
dc.contributor.author Κανέλλος, Φ. el
dc.contributor.author Ηλίας, Χρήστος el
dc.contributor.author Κονταργύρη, Βασιλική el
dc.contributor.author Τσιρέκης, Κωνσταντίνος el
dc.date.accessioned 2015-05-25T18:28:45Z
dc.date.available 2015-05-25T18:28:45Z
dc.date.issued 2015-05-25
dc.identifier.uri http://hdl.handle.net/11400/11143
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.wseas.org en
dc.subject Artificial neural networks
dc.subject Output variables
dc.subject Short-term load forecasting
dc.subject Τεχνητά δίκτυα νεύρων
dc.subject Μεταβλητές εξόδου
dc.subject Βραχυπρόθεσμη πρόβλεψη φορτίου
dc.title Short term load forecasting in Greek interconnected power system using ANN en
heal.type conferenceItem
heal.secondaryTitle a study for output variables en
heal.classification Technology
heal.classification Energy
heal.classification Τεχνολογία
heal.classification Ενέργεια
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://id.loc.gov/authorities/names/n42028321
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ενέργεια
heal.contributorName Καρανάσιου, Ι. el
heal.contributorName Σαλής, Α. el
heal.contributorName Κονταξής, Παναγιώτης el
heal.contributorName Γιαλκέτση, Α. el
heal.contributorName Μαστοράκης, Ν. el
heal.language en
heal.access campus
heal.publicationDate 2011-07-14
heal.bibliographicCitation Tsekouras, G., Kanellos, F., Elias, C., Kontargyri, V., Tsirekis, C. et al. (2011) Short term load forecasting in Greek interconnected power system using ANN: A study for output variables. In 15th WSEAS International Conference on Systems. 14th to 16th July 2011. Corfu en
heal.abstract The purpose of this paper is to compare the performance of different structures of Artificial Neural Networks (ANNs) regarding the output variables used for short term forecasting of the next day load of the interconnected Greek power system. In all cases the output variables are the hourly actual loads of the next day. The classical ANN design adopts an ANN model with 24 output variables. Alternatively, 24 different ANN models can be implemented for each hour of the day. This solution can affect the selection of input variables indirectly. In this paper, various scenarios of the solution of 24 different ANN models are going to be studied with different sets of input variables using the scaled conjugate gradient training algorithm, for which a calibration process is conducted regarding the crucial parameters values, such as the number of neurons, the type of activation functions, etc. The performance of each structure is evaluated by the Mean Absolute Percentage Error (MAPE) between the experimental measurements and estimated values of the hourly load demand of the next day for the evaluation set in order to specify the optimal ANN. Next, the load demand for the next day of the test set (with the historical data of the current year) is estimated using the best ANN structure, to verify the behaviour of ANN load prediction techniques. Finally the classical design and different proposed structures are compared. en
heal.fullTextAvailability true
heal.conferenceName 15th WSEAS International Conference on Systems en
heal.conferenceItemType poster


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες