dc.contributor.author | Πάτσης, Γεώργιος Π. | el |
dc.contributor.author | Νίνος, Κωνσταντίνος Δ. | el |
dc.contributor.author | Μαθιουλάκης, Δημήτριος Σ. | el |
dc.contributor.author | Καλτσάς, Γρηγόριος | el |
dc.date.accessioned | 2015-05-27T16:59:44Z | |
dc.date.available | 2015-05-27T16:59:44Z | |
dc.date.issued | 2015-05-27 | |
dc.identifier.uri | http://hdl.handle.net/11400/11255 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com/ | en |
dc.subject | COMSOL | |
dc.subject | Mass transfer rate | |
dc.subject | Microchannels | |
dc.subject | Microfluidics | |
dc.subject | Rarefied gas | |
dc.subject | Simulation | |
dc.subject | Προσομοίωση | |
dc.subject | Ρυθμός μεταφοράς μάζας | |
dc.subject | Μικροκανάλια | |
dc.subject | Αραιό αέριο | |
dc.title | Simulation and experimental evaluation of gas mass flow transfer rate in microchannels | en |
heal.type | journalArticle | |
heal.generalDescription | 25th Eurosensors Conference. Athens, Greece. 4-7 September, 2011. Code 88600 | en |
heal.classification | Technology | |
heal.classification | Chemical technology | |
heal.classification | Τεχνολογία | |
heal.classification | Χημική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://skos.um.es/unescothes/C00565 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Χημική τεχνολογία | |
heal.identifier.secondary | DOI: 10.1016/j.proeng.2011.12.111 | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2011 | |
heal.bibliographicCitation | PATSIS, G.P., NINOS, K.D., MATHIOULAKIS, D.S. & KALTSAS, G. (2011). Simulation and experimental evaluation of gas mass flow transfer rate in microchannels. Procedia Engineering. [online] 25. p. 447-450. Available from: http://www.elsevier.com/[Accessed 08/01/2012] | en |
heal.abstract | Continuum hydrodynamics accurately describes the flow of fluids over a wide range of systems. However, continuum models are unable to adequately describe the flow of fluid under extreme confinement. In particular, the no-slip boundary condition invoked in continuum flow calculations is violated for low density gases flowing in microtubes or nanoporous materials. The calculation of gas mass transfer rate in microtubes using experiments and simulation is investigated in the case of small absolute pressures. Specifically, in the present work, Argon gas is considered in a 3D model of two metallic tanks connected through microchannels. The pressure difference between the inlet and the outlet of the structure is monitored as a function of time. Thus the gas transfer rate is evaluated and compared with experimental data, in order to verify the departure from the standard Navier - Stokes equations with the no-slip boundary condition. | en |
heal.publisher | Elsevier | en |
heal.journalName | Procedia Engineering | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: