Όνομα Συνεδρίου:Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer Science
We describe algorithms for finding shortest paths and distances in a planar digraph which exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. Our data structures can be updated after any such change in only polylogarithmic time, while a single-pair query is answered in sublinear time. We also describe the first parallel algorithms for solving the dynamic version of the shortest path problem.