Εμφάνιση απλής εγγραφής

dc.contributor.author Αλεξανδρίδης, Αλέξανδρος Π. el
dc.contributor.author Χονδροδήμα, Ευαγγελία el
dc.date.accessioned 2015-06-03T18:23:31Z
dc.date.available 2015-06-03T18:23:31Z
dc.date.issued 2015-06-03
dc.identifier.uri http://hdl.handle.net/11400/15002
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com/ en
dc.subject Decision support systems
dc.subject Evolutionary computation
dc.subject Medical diagnosis
dc.subject Neural networks
dc.subject Radial basis functions
dc.subject Simulated annealing
dc.subject υστήματα υποστήριξης αποφάσεων
dc.subject Εξελικτική υπολογιστική
dc.subject Ιατρική διάγνωση
dc.subject Νευρωνικά δίκτυα
dc.subject Ακτινική συνάρτηση βάσης
dc.subject Προσομοιωμένη ανόπτηση
dc.title A medical diagnostic tool based on radial basis function classifiers and evolutionary simulated annealing en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Medicine
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classification Ιατρική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.classificationURI **N/A**-Ιατρική
heal.keywordURI http://id.loc.gov/authorities/subjects/sh86006549
heal.keywordURI http://id.loc.gov/authorities/subjects/sh95003989
heal.keywordURI http://zbw.eu/stw/descriptor/19808-6
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2002004691
heal.identifier.secondary DOI: 10.1016/j.jbi.2014.03.008
heal.language en
heal.access campus
heal.publicationDate 2014-06
heal.bibliographicCitation ALEXANDRIDIS, A.P. & CHONDRODIMA, E. (2014). A medical diagnostic tool based on radial basis function classifiers and evolutionary simulated annealing. Journal of Biomedical Informatics. [online] 49. p. 61-72. Available from: http://www.elsevier.com/[Accessed 21/03/2014] en
heal.abstract Objective: The profusion of data accumulating in the form of medical records could be of great help for developing medical decision support systems. The objective of this paper is to present a methodology for designing data-driven medical diagnostic tools, based on neural network classifiers. Methods: The proposed approach adopts the radial basis function (RBF) neural network architecture and the non-symmetric fuzzy means (NSFM) training algorithm, which presents certain advantages including better approximation capabilities and shorter computational times. The novelty in this work consists of adapting the NSFM algorithm to train RBF classifiers, and suitably tailoring the evolutionary simulated annealing (ESA) technique to optimize the produced RBF models. The integration of ESA is critical as it helps the optimization procedure to escape from local minima, which could arise from the application of the traditional simulated annealing algorithm, and thus discover improved solutions. The resulting method is evaluated in nine different medical benchmark datasets, where the common objective is to train a suitable classifier. The evaluation includes a comparison with two different schemes for training classifiers, including a standard RBF training technique and support vector machines (SVMs). Accuracy% and the Matthews Correlation Coefficient (MCC) are used for comparing the performance of the three classifiers. Results: Results show that the use of ESA helps to greatly improve the performance of the NSFM algorithm and provide satisfactory classification accuracy. In almost all benchmark datasets, the best solution found by the ESA-NSFM algorithm outperforms the results produced by the SFM algorithm and SVMs, considering either the accuracy% or the MCC criterion. Furthermore, in the majority of datasets, the average solution of the ESA-NSFM population is statistically significantly higher in terms of accuracy% and MCC at the 95% confidence level, compared to the global optimum solution that its rivals could achieve. As far as computational times are concerned, the proposed approach was found to be faster compared to SVMs. Conclusions: The results of this study suggest that the ESA-NSFM algorithm can form the basis of a generic method for knowledge extraction from data originating from different kinds of medical records. Testing the proposed approach on a number of benchmark datasets, indicates that it provides increased diagnostic accuracy in comparison with two different classifier training methods. en
heal.publisher Elsevier en
heal.journalName Journal of Biomedical Informatics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S1532046414000653-main.pdf
    Μέγεθος: 796.2Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες