dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.date.accessioned | 2015-06-03T18:44:43Z | |
dc.date.issued | 2015-06-03 | |
dc.identifier.uri | http://hdl.handle.net/11400/15004 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.worldscientific.com/ | en |
dc.subject | Adaptive modeling | |
dc.subject | fuzzy means | |
dc.subject | online learning | |
dc.subject | radial basis function | |
dc.subject | soft-sensors | |
dc.subject | Προσαρμοστικά μοντέλα | |
dc.subject | ασαφή μέσα | |
dc.subject | ηλεκτρονική μάθηση | |
dc.subject | ακτινική συνάρτηση βάσης | |
dc.title | Evolving RBF neural networks for adaptive soft-sensor design | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.identifier.secondary | DOI: 10.1142/S0129065713500299 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.publicationDate | 2013-12 | |
heal.bibliographicCitation | ALEXANDRIDIS, A.P. (2013). Evolving RBF neural networks for adaptive soft-sensor design. International Journal of Neural Systems. [online] 23 (6). 1350029. Available from: http://www.worldscientific.com/ | en |
heal.abstract | This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology. | en |
heal.publisher | World Scientific Publishing | en |
heal.journalName | International Journal of Neural Systems | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | false |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: