dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.date.accessioned | 2015-06-03T18:57:51Z | |
dc.date.issued | 2015-06-03 | |
dc.identifier.uri | http://hdl.handle.net/11400/15006 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://ieeexplore.ieee.org/ | en |
dc.subject | Evolutionary computation | |
dc.subject | Genetic algorithms | |
dc.subject | Non-symmetric Fuzzy Means | |
dc.subject | Radial basis functions | |
dc.subject | Εξελικτική Υπολογιστική | |
dc.subject | Γενετικοί Αλγόριθμοι | |
dc.subject | Ακτινική συνάρτηση βάσης | |
dc.title | An evolutionary-based approach in RBF neural network training | en |
heal.type | conferenceItem | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh95003989 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh92002377 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh2002004691 | |
heal.identifier.secondary | DOI: 10.1109/EAIS.2012.6232817 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.publicationDate | 2012 | |
heal.bibliographicCitation | Alexandridis, A.P. (2012) An evolutionary-based approach in RBF neural network training, In: Proceedings of the IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS 2012. Madrid, Spain. 17-18 May, 2012. [online]. p. 127-132, 6232817. Available from: http://ieeexplore.ieee.org/ | en |
heal.abstract | This paper presents a methodology for evolving populations of Radial Basis Function (RBF) networks, in order to optimize the accuracy of the corresponding model predictions. The method encodes possible non-symmetric fuzzy partitions of the input space as chromosomes and then uses the non-symmetric fuzzy means algorithm to deploy an RBF network for each partition. The chromosomes are evolved through the use of a specially designed Genetic Algorithm, thus resulting to improved RBF models. The proposed approach has been applied successfully to neural network training benchmark problems. | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | false | |
heal.conferenceName | IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS 2012 | en |
heal.conferenceItemType | poster |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: