Όνομα Περιοδικού:Applied Mathematics and Computation
We present and illustrate the simulation results of a cellular automata model describing the dynamics of a forest fire spread on a mountainous landscape taking into account factors such as the type and density of vegetation, the wind speed and direction and the spotting phenomenon. The model is used to simulate the wildfire that broke up on Spetses in August of 1990 and destroyed a major part of the Island's forest. We used a black-box non-linear optimization approach to fine-tune some of the model's parameters based on a geographical information system incorporating available data from the real forest fire. The comparison between the simulation and the actual-observed results showed that the proposed model predicts in a quite adequate manner the evolution characteristics in space and time of the real incident and as such could be potentially used to develop a fire risk-management tool for heterogeneous landscapes.