Εμφάνιση απλής εγγραφής

dc.contributor.author Δογάνης, Φίλιππος el
dc.contributor.author Αλεξανδρίδης, Αλέξανδρος Π. el
dc.contributor.author Πατρινός, Παναγιώτης Κ. el
dc.contributor.author Σαρίμβεης, Χαράλαμπος Κ. el
dc.date.accessioned 2015-06-04T12:26:07Z
dc.date.available 2015-06-04T12:26:07Z
dc.date.issued 2015-06-04
dc.identifier.uri http://hdl.handle.net/11400/15053
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com/ en
dc.subject Dairy products
dc.subject Evolutionary computation
dc.subject Fresh milk
dc.subject Genetic algorithms
dc.subject neural networks
dc.subject Sales forecasting
dc.subject Γαλακτοκομικά προϊόντα
dc.subject Εξελικτική υπολογιστική
dc.subject Φρέσκο γάλα
dc.subject Γενετικοί αλγόριθμοι
dc.subject Νευρωνικά δίκτυα
dc.subject Πρόβλεψη πωλήσεων
dc.title Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing en
heal.type journalArticle
heal.classification Technology
heal.classification Chemical technology
heal.classification Τεχνολογία
heal.classification Χημική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://skos.um.es/unescothes/C00565
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Χημική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85035453
heal.keywordURI http://id.loc.gov/authorities/subjects/sh95003989
heal.keywordURI http://id.loc.gov/authorities/subjects/sh92002377
heal.keywordURI http://lod.nal.usda.gov/12606
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85116727
heal.identifier.secondary DOI: 10.1016/j.jfoodeng.2005.03.056
heal.language en
heal.access campus
heal.publicationDate 2006-07
heal.bibliographicCitation DOGANIS, P., ALEXANDRIDIS, A.P., PATRINOS, P.K. & SARIMVEIS, H.K. (2006). Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing. Journal of Food Engineering. [online] 75 (2). p. 196-204. Available from: http://www.elsevier.com/[Accessed 21/06/2005] en
heal.abstract Due to the strong competition that exists today, most manufacturing organizations are in a continuous effort for increasing their profits and reducing their costs. Accurate sales forecasting is certainly an inexpensive way to meet the aforementioned goals, since this leads to improved customer service, reduced lost sales and product returns and more efficient production planning. Especially for the food industry, successful sales forecasting systems can be very beneficial, due to the short shelf-life of many food products and the importance of the product quality which is closely related to human health. In this paper we present a complete framework that can be used for developing nonlinear time series sales forecasting models. The method is a combination of two artificial intelligence technologies, namely the radial basis function (RBF) neural network architecture and a specially designed genetic algorithm (GA). The methodology is applied successfully to sales data of fresh milk provided by a major manufacturing company of dairy products. en
heal.publisher Elsevier en
heal.journalName Journal of Food Engineering en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0260877405002402-main.pdf
    Μέγεθος: 181.4Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες