dc.contributor.author | Μελαγράκη, Γεωργία | el |
dc.contributor.author | Αφαντίτης, Ανδρέας | el |
dc.contributor.author | Σαρίμβεης, Χαράλαμπος Κ. | el |
dc.contributor.author | Ιγγλέση-Μαρκοπούλου, Όλγα | el |
dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.date.accessioned | 2015-06-04T12:38:36Z | |
dc.date.available | 2015-06-04T12:38:36Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15054 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://link.springer.com/ | en |
dc.subject | Neural network | |
dc.subject | QSTR | |
dc.subject | RBF architecture | |
dc.subject | Toxicity | |
dc.subject | Vibrio fischeri | |
dc.subject | Νευρωνικό δίκτυο | |
dc.subject | τοξικότητα | |
dc.title | A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri | en |
heal.type | journalArticle | |
heal.classification | Science | |
heal.classification | Physics | |
heal.classification | Επιστήμη | |
heal.classification | Φυσική | |
heal.classificationURI | http://zbw.eu/stw/descriptor/15685-2 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/15669-0 | |
heal.classificationURI | **N/A**-Επιστήμη | |
heal.classificationURI | **N/A**-Φυσική | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh88023359 | |
heal.identifier.secondary | DOI 10.1007/s11030-005-9008-y | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2006-05 | |
heal.bibliographicCitation | MELAGRAKI, G., AFANTITIS, A., SARIMVEIS, H.K., IGGLESSI-MARKOPOULOU, O. & ALEXANDRIDIS, A.P. (2006). A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri. Molecular Diversity. [online] 10 (2). p. 213-221. Available from: http://link.springer.com/ | en |
heal.abstract | This work introduces a neural network methodology for developing QSTR predictors of toxicity to Vibrio fischeri. The method adopts the Radial Basis Function (RBF) architecture and the fuzzy means training strategy, which is fast and repetitive, in contrast to most traditional training techniques. The data set that was utilized consisted of 39 organic compounds and their corresponding toxicity values to Vibrio fischeri, while lipophilicity, equalized electronegativity and one topological index were used to provide input information to the models. The performance and predictive ability of the RBF model were illustrated through external validation and various statistical tests. The proposed methodology can be used to successfully model toxicity to Vibrio fischerifor a heterogeneous set of compounds. | en |
heal.publisher | Springer Verlag | en |
heal.journalName | Molecular Diversity | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: