Show simple item record

dc.contributor.author Σαρίμβεης, Χαράλαμπος Κ. el
dc.contributor.author Δογάνης, Φίλιππος el
dc.contributor.author Αλεξανδρίδης, Αλέξανδρος Π. el
dc.date.accessioned 2015-06-04T12:45:14Z
dc.date.available 2015-06-04T12:45:14Z
dc.date.issued 2015-06-04
dc.identifier.uri http://hdl.handle.net/11400/15055
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com/ en
dc.subject Classification
dc.subject Fuzzy means
dc.subject Neural networks
dc.subject Quality properties
dc.subject Radial basis functions
dc.subject Ταξινόμηση
dc.subject Ασαφή μέσα
dc.subject Νευρωνικά δίκτυα
dc.subject Ποιοτικές ιδιότητες
dc.subject Ακτινικές συναρτήσεις βάσεις
dc.title A classification technique based on radial basis function neural networks en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2002004691
heal.identifier.secondary DOI: 10.1016/j.advengsoft.2005.07.005
heal.language en
heal.access campus
heal.publicationDate 2006-04
heal.bibliographicCitation SARIMVEIS, H.K., DOGANIS, P. & ALEXANDRIDIS, A.P. (2006). A classification technique based on radial basis function neural networks. Advances in Engineering Software. [online] 37 (4). p. 218-221. Available from: http://www.elsevier.com/[Accessed 09/09/2005] en
heal.abstract In this paper, a new classification method is proposed based on the radial basis function (RBF) neural network architecture. The method is particularly useful for manufacturing processes, in cases where on-line sensors for classifying the product quality are not available. More specifically, the fuzzy means algorithm is employed on a set of training data, where the input data refer to variables that are measured on-line and the output data correspond to quality variables that are classified by human experts. The produced neural network model acts as an artificial sensor that is able to classify the product quality in real time. The proposed method is illustrated through an application to real data collected from a paper machine. The method produces successful results and outperforms a number of classifiers, which are based on the feedforward neural network (FNN) architecture. en
heal.publisher Elsevier en
heal.journalName Advances in Engineering Software en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Files in this item

  • Name: 1-s2.0-S0965997805001341-main.pdf
    Size: 78.90Kb
    Format: PDF

The following license files are associated with this item:

Show simple item record

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Except where otherwise noted, this item's license is described as Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες