dc.contributor.author | Αγγελογιαννάκη, Ελένη | el |
dc.contributor.author | Σαρίμβεης, Χαράλαμπος Κ. | el |
dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.date.accessioned | 2015-06-04T13:02:57Z | |
dc.date.available | 2015-06-04T13:02:57Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15057 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.ifac.org/ | en |
dc.subject | Adaptation | |
dc.subject | Heuristic searches | |
dc.subject | Model based control | |
dc.subject | Multiobjective optimization | |
dc.subject | Radial base function networks | |
dc.subject | προσαρμογή | |
dc.subject | Μοντέλο βασισμένο στον έλεγχο | |
dc.subject | Πολυκριτηριακή βελτιστοποίηση | |
dc.title | A prioritized multiobjective MPC configuration using adaptive RBF networks and evolutionary computation | en |
heal.type | conferenceItem | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2005 | |
heal.bibliographicCitation | Aggelogiannaki, E., Sarimveis, H.K. & Alexandridis, A.P. (2005) A prioritized multiobjective MPC configuration using adaptive RBF networks and evolutionary computation, In: Proceedings of the 16th Triennial World Congress of International Federation of Automatic Control, IFAC 2005. Prague, Czech Republic. 3-4 July, 2005. [online] 16. p. 150-155. Available from: http://www.ifac.org/ | en |
heal.abstract | in this work a prioritized multiobjective model predictive control configuration for nonlinear processes is proposed. The process is modeled by an adaptive radial basis function neural network so that modifications through time can be identified. The different control targets are formulated in a multiobjective optimization problem which is solved using a prioritized evolutionary algorithm. The request for adequate information in order to adapt the dynamics of the model is considered as the top priority objective. The algorithm is tested through the control of a pH reactor and the results are in favor of the proposed methodology. | en |
heal.publisher | IFAC | en |
heal.fullTextAvailability | true | |
heal.conferenceName | 16th Triennial World Congress of International Federation of Automatic Control, IFAC 2005 | en |
heal.conferenceItemType | poster |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: