Εμφάνιση απλής εγγραφής

dc.contributor.author Αλεξανδρίδης, Αλέξανδρος Π. el
dc.contributor.author Σαρίμβεης, Χαράλαμπος Κ. el
dc.date.accessioned 2015-06-04T13:09:22Z
dc.date.available 2015-06-04T13:09:22Z
dc.date.issued 2015-06-04
dc.identifier.uri http://hdl.handle.net/11400/15058
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://eu.wiley.com/ en
dc.subject Adaptive control
dc.subject Digester control
dc.subject Model predictive control
dc.subject Nonlinear control
dc.subject Radial basis function networks
dc.subject Προσαρμοζόμενος έλεγχος
dc.subject Μοντέλο πρόβλεψης ελέγχου
dc.subject Μη γραμμικός έλεγχος
dc.title Nonlinear adaptive model predictive control based on self-correcting neural network models en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.identifier.secondary DOI: 10.1002/aic.10505
heal.language en
heal.access campus
heal.publicationDate 2005-09
heal.bibliographicCitation ALEXANDRIDIS, A.P. & SARIMVEIS, H.K. (2005). Nonlinear adaptive model predictive control based on self-correcting neural network models. AIChE Journal. [online] 51 (9). p. 2495-2506. Available from: http://eu.wiley.com/ en
heal.abstract Two major issues in process control are the nonlinearities and variations with time that are observed in the dynamics of the processes. In most cases these problems are confronted by robust linear controllers, which are frequently retuned to take into account changes in the operating region or the system dynamics. Obviously, the performance of these controllers is limited by the degree of nonlinearities and the frequency of process variations. In this paper we present a new model predictive control (MPC) framework that can deal with both these issues. The proposed methodology is based on a nonlinear dynamic radial basis function (RBF) model of the process that is able to correct itself as new information about the process dynamics becomes available. The adaptive training algorithm that is used is able to update both the structure and the parameters of the RBF model. The typical formulation of the on-line optimization problem is augmented by a persistent excitation condition that guarantees that enough perturbation is introduced to the system by the control moves. The proposed MPC framework is applied on the digester control problem and proves to be superior to other MPC configurations. en
heal.publisher Wiley en
heal.journalName AIChE Journal en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Alexandridis_et_al-2005-AIChE_ ...
    Μέγεθος: 223.1Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες