dc.contributor.author | Αφαντίτης, Ανδρέας | el |
dc.contributor.author | Μελαγράκη, Γεωργία | el |
dc.contributor.author | Μακρυδήμα, Καλλιόπη | el |
dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.contributor.author | Σαρίμβεης, Χαράλαμπος Κ. | el |
dc.date.accessioned | 2015-06-04T13:21:14Z | |
dc.date.available | 2015-06-04T13:21:14Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15059 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com/ | en |
dc.subject | Glass transition temperature | |
dc.subject | QSPR | |
dc.subject | RBF neural network | |
dc.subject | Θερμοκρασία υαλώδους μετάπτωσης | |
dc.title | Prediction of high weight polymers glass transition temperature using RBF neural networks | en |
heal.type | journalArticle | |
heal.classification | Science | |
heal.classification | Physics | |
heal.classification | Επιστήμη | |
heal.classification | Φυσική | |
heal.classificationURI | http://zbw.eu/stw/descriptor/15685-2 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/15669-0 | |
heal.classificationURI | **N/A**-Επιστήμη | |
heal.classificationURI | **N/A**-Φυσική | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh94004665 | |
heal.contributorName | Ιγγλέση-Μαρκοπούλου, Όλγα | el |
heal.identifier.secondary | DOI: 10.1016/j.theochem.2004.11.021 | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2007-03-07 | |
heal.bibliographicCitation | AFANTITIS, A., MELAGRAKI, G., MAKRIDIMA, A., ALEXANDRIDIS, A.P., SARIMVEIS, H.K., et al. (2005). Prediction of high weight polymers glass transition temperature using RBF neural networks. Journal of Molecular Structure: THEOCHEM. [online] 716 (1-3). p. 193-198. Available from: http://www.elsevier.com/[Accessed 05/01/2005] | en |
heal.abstract | A novel approach to the prediction of the glass transition temperature (Tg) for high molecular polymers is presented. A new quantitative structure-property relationship (QSPR) model is obtained using Radial Basis Function (RBF) neural networks and a set of four-parameter descriptors, ∑MV(ter)(Rter), LF, ΔXSB and ∑PEI. The produced QSPR model (R2=0.9269) proved to be considerably more accurate compared to a multiple linear regression model (R2=0.8227). | en |
heal.publisher | Elsevier | en |
heal.journalName | Journal of Molecular Structure: THEOCHEM | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: