Εμφάνιση απλής εγγραφής

dc.contributor.author Αλεξανδρίδης, Αλέξανδρος Π. el
dc.contributor.author Πατρινός, Παναγιώτης Κ. el
dc.contributor.author Σαρίμβεης, Χαράλαμπος Κ. el
dc.contributor.author Τσεκούρας, Γεώργιος Ε. el
dc.date.accessioned 2015-06-04T13:30:47Z
dc.date.available 2015-06-04T13:30:47Z
dc.date.issued 2015-06-04
dc.identifier.uri http://hdl.handle.net/11400/15060
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com/ en
dc.subject Evolutionary computation
dc.subject Genetic algorithms
dc.subject Neural networks
dc.subject Radial basis functions
dc.subject Simulated annealing
dc.subject Variable selection
dc.subject Εξελικτική υπολογιστική
dc.subject Γενετικοί αλγόριθμοι
dc.subject Νευρωνικά δίκτυα
dc.subject Ακτινική συνάρτηση βάσης
dc.subject Προσομοιωμένη ανόπτηση
dc.subject Επιλογή μεταβλητής
dc.title A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh95003989
heal.keywordURI http://id.loc.gov/authorities/subjects/sh92002377
heal.keywordURI http://zbw.eu/stw/descriptor/19808-6
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2002004691
heal.identifier.secondary DOI: 10.1016/j.chemolab.2004.06.004
heal.language en
heal.access campus
heal.publicationDate 2005-02-28
heal.bibliographicCitation ALEXANDRIDIS, A.P., PATRINOS, P.K., SARIMVEIS, H.K. & TSEKOURAS, G.E. (2005). A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models. Chemometrics and Intelligent Laboratory Systems. [online] 75 (2). p. 149-162. Available from: http://www.elsevier.com/[Accessed 17/08/2004] en
heal.abstract In many modeling problems that are based on input-output data, information about a plethora of variables is available. In these cases, the proper selection of explanatory variables is very critical for the success of the produced model, since it eliminates noisy variables and possible correlations, reduces the size of the model and accomplishes more accurate predictions. Many variable selection procedures have been proposed in the literature, but most of them consider only linear models. In this work, we present a novel methodology for variable selection in nonlinear modeling, which combines the advantages of several artificial intelligence technologies. More specifically, the Radial Basis Function (RBF) neural network architecture serves as the nonlinear modeling tool, by exploiting the simplicity of its topology and the fast fuzzy means training algorithm. The proper variables are selected in two stages using a multi-objective optimization approach: in the first stage, a specially designed genetic algorithm minimizes the prediction error over a monitoring data set, while in the second stage a simulated annealing technique aims at the reduction of the number of explanatory variables. The efficiency of the proposed method is illustrated through its application to a number of benchmark problems. en
heal.publisher Elsevier en
heal.journalName Chemometrics and Intelligent Laboratory Systems en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0169743904001716-main.pdf
    Μέγεθος: 499.6Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες