dc.contributor.author | Πατρινός, Παναγιώτης Κ. | el |
dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.contributor.author | Αφαντίτης, Ανδρέας | el |
dc.contributor.author | Σαρίμβεης, Χαράλαμπος Κ. | el |
dc.contributor.author | Ιγγλέση-Μαρκοπούλου, Όλγα | el |
dc.date.accessioned | 2015-06-04T13:42:02Z | |
dc.date.available | 2015-06-04T13:42:02Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15061 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com/ | en |
dc.subject | Evolutionary Computing | |
dc.subject | Genetic algorithms | |
dc.subject | Neural networks | |
dc.subject | QSAR | |
dc.subject | Radial basis functions | |
dc.subject | Simulating Annealing | |
dc.subject | Εξελικτική υπολογιστική | |
dc.subject | Γενετικοί Αλγόριθμοι | |
dc.subject | Νευρωνικά Δίκτυα | |
dc.subject | Ακτινικές συναρτήσεις βάσεις | |
dc.subject | Προσομοίωση ανόπτησης | |
dc.title | Development of nonlinear quantitative structure-activity relationships using rbf networks and evolutionary computing | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh92002377 | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19808-6 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh2002004691 | |
heal.identifier.secondary | DOI: 10.1016/S1570-7946(04)80110-X | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2004 | |
heal.bibliographicCitation | PATRINOS, P.K., ALEXANDRIDIS, A.P., AFANTITIS, A., SARIMVEIS, H.K. & IGGLESSI-MARKOPOULOU, O. (2004). Development of nonlinear quantitative structure-activity relationships using rbf networks and evolutionary computing. Computer Aided Chemical Engineering. [online] 18 (C). p. 265-270. Available from: http://www.elsevier.com/[Accessed 03/07/2007] | en |
heal.abstract | Quantitative Structure Activity Relationships (QSARs) are mathematical models that correlate structural or property descriptions of compounds (hydrophobicity, topology, electronic properties etc.) with activities, such as chemical measurements and biological assays. In this paper we propose a modeling methodology suitable for QSAR studies which selects the proper descriptors based on evolutionary computing and finally produces Radial Basis Function (RBF) neural network models. The method is successfully applied to the benchmark Selwood data set. | en |
heal.publisher | Elsevier | en |
heal.journalName | Computer Aided Chemical Engineering | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: