Εμφάνιση απλής εγγραφής

dc.contributor.author Σαρίμβεης, Χαράλαμπος Κ. el
dc.contributor.author Αλεξανδρίδης, Αλέξανδρος Π. el
dc.contributor.author Μαζαράκης, Στέφανος el
dc.contributor.author Μπάφας, Γιώργος Β. el
dc.date.accessioned 2015-06-04T14:24:41Z
dc.date.available 2015-06-04T14:24:41Z
dc.date.issued 2015-06-04
dc.identifier.uri http://hdl.handle.net/11400/15069
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com/ en
dc.subject Dynamic modeling
dc.subject Genetic algorithms
dc.subject Model structure optimization
dc.subject Radial basis functions
dc.subject RBF networks
dc.subject Δυναμική μοντελοποίηση
dc.subject Γενετικοί αλγόριθμοι
dc.subject Μοντέλο βελτιστοποίησης της δομής
dc.subject Συναρτήσεις ακτινικής βάσης
dc.title A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms en
heal.type journalArticle
heal.classification Technology
heal.classification Electrical engineering
heal.classification Τεχνολογία
heal.classification Ηλεκτρολογία Μηχανολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/18426-4
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρολογία Μηχανολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh92002377
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2002004691
heal.identifier.secondary DOI: 10.1016/S0098-1354(03)00169-8
heal.language en
heal.access campus
heal.publicationDate 2004-01-15
heal.bibliographicCitation SARIMVEIS, H.K., ALEXANDRIDIS, A.P., MAZARAKIS, S. & BAFAS, G.V. (2004). A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms. Computers and Chemical Engineering. [online] 28 (1-2). p. 209-217. Available from: http://www.elsevier.com/[Accessed 27/11/2003] en
heal.abstract A new method for extracting valuable process information from input-output data is presented in this paper. The proposed methodology produces dynamical radial basis function (RBF) neural network models based on a specially designed genetic algorithm (GA), which is used to auto-configure the structure of the networks and obtain the model parameters. The new RBF network training technique formulates a complete optimization problem, which includes the network structure into the set of free variables that are used to minimize the prediction error. This is a different approach compared with the local search methods employed by other structure selection mechanisms, which are often trapped to local minima. Another advantage of the proposed method is that only one run of the algorithm is required to obtain the optimal network structure, in contrast to the standard RBF training techniques, where the produced model is selected by trial and error. The effectiveness of the method is illustrated through the development of dynamical models for two sets of data: simulated data from a Continuous Stirred Tank Reactor (CSTR) and true data collected from a Kamyr digester, which is a rather complicated reactor used in the pulp and paper industry. en
heal.publisher Elsevier en
heal.journalName Computers and Chemical Engineering en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0098135403001698-main.pdf
    Μέγεθος: 394.2Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες