dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.contributor.author | Σαρίμβεης, Χαράλαμπος Κ. | el |
dc.contributor.author | Μπάφας, Γιώργος Β. | el |
dc.contributor.author | Ρετσινά, Θεοδώρα Ρ. | el |
dc.date.accessioned | 2015-06-04T15:15:04Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15076 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.tappi.org/ | en |
dc.subject | Identification | |
dc.subject | Predictive control systems | |
dc.subject | Neural networks | |
dc.subject | ταυτοποίηση | |
dc.subject | Προγνωστικά συστήματα ελέγχου | |
dc.subject | Νευρωνικά δίκτυα | |
dc.title | A neural network approach for modeling and control of continuous digesters | en |
heal.type | conferenceItem | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19808-6 | |
heal.identifier.secondary | ISBN: 193065796X | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.publicationDate | 2002 | |
heal.bibliographicCitation | Alexandridis, A.P., Sarimveis, H.K., Bafas, G.V. & Retsina, T.R. (2002) A neural network approach for modeling and control of continuous digesters, In: Proceedings of the 2002 TAPPI Fall Technical Conference and Trade Fair. San Diego, CA, United States. 8-11 September, 2002. [online]. p. 355-367. Available from: http://www.tappi.org/ | en |
heal.abstract | In this paper we present a methodology for developing dynamical models for continuous digesters using input-output data. The methodology uses the Radial Basis Function (RBF) neural network architecture, which is continuously increasing its popularity in solving system identification problems, due its simple network structure and the short training times it employs. The produced dynamic RBF network model can be utilized to predict the future behavior of the process, analyze the dynamics of the digester and control the process through a Model Predictive Control (MPC) scheme. | en |
heal.publisher | TAPPI | en |
heal.fullTextAvailability | false | |
heal.conferenceName | 2002 TAPPI Fall Technical Conference and Trade Fair | el |
heal.conferenceItemType | poster |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: