dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.contributor.author | Σιέττος, Κωνσταντίνος Ι. | el |
dc.contributor.author | Σαρίμβεης, Χαράλαμπος Κ. | el |
dc.contributor.author | Μπουντουβής, Ανδρέας Γ. | el |
dc.contributor.author | Μπάφας, Γιώργος Β. | el |
dc.date.accessioned | 2015-06-04T16:22:57Z | |
dc.date.available | 2015-06-04T16:22:57Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15088 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com/ | en |
dc.subject | Chebyshev series | |
dc.subject | Fuzzy dynamical models | |
dc.subject | Nonlinear system identification | |
dc.subject | Qualitative modeling | |
dc.subject | Self-organizing maps | |
dc.subject | Ποιοτική μοντελοποίηση | |
dc.subject | Χάρτες αυτο-οργάνωσης | |
dc.subject | Ασαφή δυναμικά μοντέλα | |
dc.subject | Ταυτοποίηση μη γραμμικού συστήματος | |
dc.title | Modelling of nonlinear process dynamics using Kohonen's neural networks, fuzzy systems and Chebyshev series | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Chemical technology | |
heal.classification | Τεχνολογία | |
heal.classification | Χημική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://skos.um.es/unescothes/C00565 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Χημική τεχνολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85022809 | |
heal.identifier.secondary | DOI: 10.1016/S0098-1354(01)00785-2 | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2002-05-15 | |
heal.bibliographicCitation | ALEXANDRIDIS, A.P., SIETTOS, C.I., SARIMVEIS, H.K., BOUDOUVIS, A.G. & BAFAS, G.V. (2002). Modelling of nonlinear process dynamics using Kohonen's neural networks, fuzzy systems and Chebyshev series. Computers and Chemical Engineering. [online] 26 (4-5). p. 479-486. Available from: http://www.elsevier.com/[Accessed 22/01/2002] | en |
heal.abstract | This paper introduces a new systematic methodology to the problem of nonlinear system identification with the aid of neural networks, fuzzy systems and truncated Chebyshev series. The proposed methodology is of general use and results in both a linguistic and an analytical model of the system under study. The method was successfully tested in the identification of certain operating regions in a Continuous Stirred Tank Reactor (CSTR) exhibiting various types of nonlinear behaviour, such as limit cycles and multiple steady states. The performance of the methodology was evaluated via a comparison with two different identification schemes, namely a feedforward neural network and an approach based on the normal form theory. | en |
heal.publisher | Elsevier | en |
heal.journalName | Computers and Chemical Engineering | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: