dc.contributor.author | Σαρίμβεης, Χαράλαμπος Κ. | el |
dc.contributor.author | Αλεξανδρίδης, Αλέξανδρος Π. | el |
dc.contributor.author | Τσεκούρας, Γεώργιος Ε. | el |
dc.contributor.author | Μπάφας, Γιώργος Β. | el |
dc.date.accessioned | 2015-06-04T16:45:30Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15096 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://pubs.acs.org/ | en |
dc.subject | Computer simulation | |
dc.subject | Neural networks | |
dc.subject | Chemical engineering | |
dc.subject | υπολογιστική προσομοίωση | |
dc.subject | νευρωνικά δίκτυα | |
dc.subject | Χημική μηχανική | |
dc.title | A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Electrical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Ηλεκτρολογία Μηχανολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/18426-4 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Ηλεκτρολογία Μηχανολογία | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19808-6 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85022900 | |
heal.identifier.secondary | DOI: 10.1021/ie010263h | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.publicationDate | 2002-02-20 | |
heal.bibliographicCitation | SARIMVEIS, H.K., ALEXANDRIDIS, A.P., TSEKOURAS, G.E. & BAFAS, G.V. (2002). A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space. Industrial and Engineering Chemistry Research. [online] 41 (4). p. 751-759. Available from: http://pubs.acs.org/ | en |
heal.abstract | The popular radial basis function (RBF) neural network architecture and a new fast and efficient method for training such a network are used to model nonlinear dynamical multi-input multi-output (MIMO) discrete-time systems. The proposed training methodology is based on a fuzzy partition of the input space and combines self-organized and supervised learning. The algorithm is illustrated through the development of neural network models using simulated and experimental data. Results show that the methodology is much faster and produces more accurate models compared to the standard techniques used to train RBF networks. Another important advantage is that, for a given fuzzy partition of the input space, the proposed method is able to determine the proper network structure, without using a trial and error procedure. | en |
heal.publisher | American Chemical Society | en |
heal.journalName | Industrial and Engineering Chemistry Research | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | false |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: