Εμφάνιση απλής εγγραφής

dc.contributor.author Δουλάμης, Αναστάσιος el
dc.contributor.author Γιακουμέττης, Χ. el
dc.contributor.author Πρωτοπαπαδάκης, Ευτύχιος el
dc.contributor.author Μιαούλης, Γεώργιος el
dc.date.accessioned 2015-06-05T16:31:01Z
dc.date.available 2015-06-05T16:31:01Z
dc.date.issued 2015-06-05
dc.identifier.uri http://hdl.handle.net/11400/15152
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://link.springer.com en
dc.subject Inductive learning
dc.subject Ηλεκτρονική μάθηση
dc.subject Επαγωγική μάθηση
dc.subject Online learning
dc.subject Φασματική ομαδοποίηση
dc.subject Spectral clustering
dc.title A constraint inductive learning-spectral clustering methodology for personalized 3D navigation en
heal.type journalArticle
heal.classification Technology
heal.classification Computer programming ( URL: http://skos.um.es/unescothes/C00749)
heal.classification Τεχνολογία
heal.classification Προγραμματισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI **N/A**-Computer programming ( URL: http://skos.um.es/unescothes/C00749)
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Προγραμματισμός
heal.identifier.secondary DOI: 10.1007/978-3-642-41939-3_11
heal.language en
heal.access campus
heal.publicationDate 2013
heal.bibliographicCitation Doulamis, N., Yiakoumettis, C., Miaoulis, G. and Protopapadakis, E. (2013) A constraint inductive learning-spectral clustering methodology for personalized 3D navigation. "Lecture Notes in Computer Science", 8034 (2), p.108-117 en
heal.abstract The recent advances in ICT boost research towards the generation of personalized Geographical Information Systems (p-GIS). It is clear that selection of a route based only on geometrical criteria, i.e., the route of the shortest distance or the minimum travel time, very rarely coincides with a "satisfactory itinerary" that respects users' preferences, that is their desires to navigate through buildings or places of his/her own particular interest. Additionally, 3D navigation gains more popularity compared with 2D approaches especially in virtual tourist and cultural heritage applications. In a p-GIS, user's preferences can be set manually or automatically. In an automatic architecture, user preferences are expressed as a set of weights that regulate the degree of importance on the route selection process and on line learning strategies are exploited to adjust the weights. In this paper, the on-line learning strategy exploits information fed back to the system about the relevance of user's preferences judgments given in a form of pair-wise comparisons. Then, we use a constraint fusion methodology for the dynamic modeling of user's preference in a 3D navigation system. The method exploits an active inductive learning approach that is combined with an adaptive spectral clustering scheme in order to avoid smoothing during the weight adjustment process. en
heal.publisher Springer en
heal.journalName Lecture Notes in Computer Science en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: chp%3A10.1007%2F978-3-642-4193 ...
    Μέγεθος: 1.150Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες