dc.contributor.author | Δουλάμης, Αναστάσιος | el |
dc.contributor.author | Γιακουμέττης, Χ. | el |
dc.contributor.author | Πρωτοπαπαδάκης, Ευτύχιος | el |
dc.contributor.author | Μιαούλης, Γεώργιος | el |
dc.date.accessioned | 2015-06-05T16:31:01Z | |
dc.date.available | 2015-06-05T16:31:01Z | |
dc.date.issued | 2015-06-05 | |
dc.identifier.uri | http://hdl.handle.net/11400/15152 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://link.springer.com | en |
dc.subject | Inductive learning | |
dc.subject | Ηλεκτρονική μάθηση | |
dc.subject | Επαγωγική μάθηση | |
dc.subject | Online learning | |
dc.subject | Φασματική ομαδοποίηση | |
dc.subject | Spectral clustering | |
dc.title | A constraint inductive learning-spectral clustering methodology for personalized 3D navigation | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Computer programming ( URL: http://skos.um.es/unescothes/C00749) | |
heal.classification | Τεχνολογία | |
heal.classification | Προγραμματισμός | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | **N/A**-Computer programming ( URL: http://skos.um.es/unescothes/C00749) | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Προγραμματισμός | |
heal.identifier.secondary | DOI: 10.1007/978-3-642-41939-3_11 | |
heal.language | en | |
heal.access | campus | |
heal.publicationDate | 2013 | |
heal.bibliographicCitation | Doulamis, N., Yiakoumettis, C., Miaoulis, G. and Protopapadakis, E. (2013) A constraint inductive learning-spectral clustering methodology for personalized 3D navigation. "Lecture Notes in Computer Science", 8034 (2), p.108-117 | en |
heal.abstract | The recent advances in ICT boost research towards the generation of personalized Geographical Information Systems (p-GIS). It is clear that selection of a route based only on geometrical criteria, i.e., the route of the shortest distance or the minimum travel time, very rarely coincides with a "satisfactory itinerary" that respects users' preferences, that is their desires to navigate through buildings or places of his/her own particular interest. Additionally, 3D navigation gains more popularity compared with 2D approaches especially in virtual tourist and cultural heritage applications. In a p-GIS, user's preferences can be set manually or automatically. In an automatic architecture, user preferences are expressed as a set of weights that regulate the degree of importance on the route selection process and on line learning strategies are exploited to adjust the weights. In this paper, the on-line learning strategy exploits information fed back to the system about the relevance of user's preferences judgments given in a form of pair-wise comparisons. Then, we use a constraint fusion methodology for the dynamic modeling of user's preference in a 3D navigation system. The method exploits an active inductive learning approach that is combined with an adaptive spectral clustering scheme in order to avoid smoothing during the weight adjustment process. | en |
heal.publisher | Springer | en |
heal.journalName | Lecture Notes in Computer Science | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: