dc.contributor.author | Μακαντάσης, Κωνσταντίνος | el |
dc.contributor.author | Πρωτοπαπαδάκης, Ευτύχιος Ε. | el |
dc.contributor.author | Δουλάμης, Αναστάσιος Δ. | el |
dc.contributor.author | Γραμματικόπουλος, Λάζαρος | el |
dc.contributor.author | Στεντούμης, Χρήστος | el |
dc.date.accessioned | 2015-06-05T16:38:49Z | |
dc.date.available | 2015-06-05T16:38:49Z | |
dc.date.issued | 2015-06-05 | |
dc.identifier.uri | http://hdl.handle.net/11400/15155 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://link.springer.com/bookseries/558 | en |
dc.subject | Fall detection | |
dc.subject | Image motion analysis | |
dc.subject | Self calibration | |
dc.subject | Semisupervised learning | |
dc.subject | Ανίχνευση πτώσης | |
dc.subject | Ανάλυση κινούμενης εικόνας | |
dc.subject | Αυτο-βαθμονόμηση | |
dc.subject | Ημι-εποπτευόμενη μάθηση | |
dc.title | Monocular camera fall detection system exploiting 3D measures | en |
heal.type | bookChapter | |
heal.secondaryTitle | a semi-supervised learning approach | en |
heal.generalDescription | Conference proceedings published in book series | en |
heal.classification | Medicine | |
heal.classification | Technology | |
heal.classification | Ιατρική | |
heal.classification | Τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/10470-6 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.identifier.secondary | DOI: 10.1007/978-3-642-33885-4_9 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Πολιτικών Μηχανικών Τ.Ε. και Μηχανικών Τοπογραφίας και Γεωπληροφορικής Τ.Ε. Κατεύθυνση Μηχανικών Τοπογραφίας & Γεωπληροφορικής Τ.Ε. | el |
heal.publicationDate | 2012 | |
heal.bibliographicCitation | Makantasis, K., Protopapadakis, E., Doulamis, A., Grammatikopoulos, L. and Stentoumis, C. (2012) Monocular camera fall detection system exploiting 3D measures: a semi-supervised learning approach. In: Fusiello, A., Murino, V. and Cucchiara, R. (eds) (2012) "Computer Vision - ECCV 2012: workshops and demonstrations: Florence, Italy, October 7-13, 2012, Proceedings, Part III". Berlin: Springer Berlin Heidelberg. Available from: http://link.springer.com/chapter/10.1007%2F978-3-642-33885-4_9# [Accessed: 05/06/2015]. | en |
heal.abstract | Falls have been reported as the leading cause of injury-related visits to emergency departments and the primary etiology of accidental deaths in elderly. The system presented in this article addresses the fall detection problem through visual cues. The proposed methodology utilize a fast, real-time background subtraction algorithm based on motion information in the scene and capable to operate properly in dynamically changing visual conditions, in order to detect the foreground object and, at the same time, it exploits 3D space’s measures, through automatic camera calibration, to increase the robustness of fall detection algorithm which is based on semi-supervised learning. The above system uses a single monocular camera and is characterized by minimal computational cost and memory requirements that make it suitable for real-time large scale implementations. | en |
heal.publisher | Springer Berlin Heidelberg | en |
heal.fullTextAvailability | true | |
heal.bookName | Computer Vision – ECCV 2012. Workshops and Demonstrations | en |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: