Mode-locked Er-doped fiber laser systems built on single-mode fiber technology continue to see a remarkable improvement in their performance characteristics. In this contribution, we present an extremely compact and powerful version of such a laser source, delivering elevated peak powers well in excess of 10 kW in combination with ultrashort pulse durations below 100 fs. Eliminating the need for costly pump sources, external cooling as well as daily realignment routines, this laser system opens possibilities for an entirely new class of experiments and applications to a much larger group of users than only dedicated laser institutes. The accessible wavelength range is greatly enhanced by generation of a supercontinuum inside an integrated highly nonlinear fiber. We report output spectra with a bandwidth exceeding one full octave which we utilize for phase stabilization of the laser source. As a first proof of principle, a precise frequency measurement is carried out on a cavity-stabilized diode laser over a time interval of 88 hours without interruption. With regard to the time domain pulse structure, the user can select to re-compress defined parts of the continuum to achieve pulse durations below 30 fs. At the same time, the central wavelength of these pulses is easily shifted over a wavelength interval from 1130 nm to 1400 nm. Based on these findings, we demonstrate the generation of widely tunable light pulses in the visible spectral range by efficient frequency doubling. Potential applications for this novel light source are discussed.