Εμφάνιση απλής εγγραφής

dc.contributor.author Λιαπαρινός, Παναγιώτης el
dc.date.accessioned 2015-06-05T19:20:42Z
dc.date.available 2015-06-05T19:20:42Z
dc.date.issued 2015-06-05
dc.identifier.uri http://hdl.handle.net/11400/15195
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://scitation.aip.org en
dc.subject Optical diffusion
dc.subject Phosphor
dc.subject Οπτική διάχυση
dc.subject Φώσφορος
dc.title Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation en
heal.type journalArticle
heal.classification Medicine
heal.classification Physics
heal.classification Ιατρική
heal.classification Φυσική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02994
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Φυσική
heal.identifier.secondary DOI: 10.1118/1.4821089
heal.language en
heal.access campus
heal.publicationDate 2013
heal.bibliographicCitation Liaparinos, P. (2013) Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation. "Medical Physics", 40 (10) en
heal.abstract Phosphor materials provide challenges to both fundamental research and breakthrough development of technologies in research areas. In recent years, with the development of science and technology in the field of materials, a number of physical or chemical synthesis methods have been developed and successfully used for the preparation of submicrometer-sized phosphors. The present paper provides a rigorous analysis of light diffusion capabilities of phosphor materials in submicrometer-scale investigating the effect of light wavelength. Methods: Mie scattering theory and Monte Carlo simulation techniques were used for the optical diffusion performance providing numerical calculations. The Monte Carlo model included: (i) phosphor layers composed of different thickness (200, 500, 1000 μm) and (ii) different light wavelength values (420, 545, 610 nm) corresponding to different types of activators, such as Ce, Tb, and Eu activators, respectively. Results: Based on Mie calculations, it was found that for low values of refractive index (e.g., 1.4) and for particle radius from 250 up to 500 nm no significant variations occurred on optical parameters. Monte Carlo simulations showed that the resolution increases as light wavelength decreases, respectively, however, this increase is more obvious at lower thickness values (i.e., at 200 μm). In particular, as light wavelength decreases from 610 down to 545 and 420 nm, the resolution increases 4.4% and 13.9%, respectively (at 200 μm layer thickness). In addition, as layer thickness increases from 200 up to 500 μm the resolution decreases 50.2% while an increase up to 1000 μm causes a decrease of 70.2% (at 420 nm light wavelength). Conclusions: The goal of the author's study was to investigate the optical diffusion characteristics of submicrometer phosphor materials using Mie scattering theory and Monte Carlo simulation. The present investigation indicated that a key parameter on resolution improvement was the amount of light loss which depends on the choice of activator and affects the lateral spreading. en
heal.journalName Medical Physics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες