Εμφάνιση απλής εγγραφής

dc.contributor.author Ασβεστάς, Παντελής el
dc.contributor.author Βεντούρας, Ερρίκος el
dc.contributor.author Καρανάσιου, Ειρήνη el
dc.contributor.author Ματσόπουλος, Γιώργος el
dc.date.accessioned 2015-06-06T14:10:06Z
dc.date.available 2015-06-06T14:10:06Z
dc.date.issued 2015-06-06
dc.identifier.uri http://hdl.handle.net/11400/15316
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://link.springer.com en
dc.subject Observational-learning mechanisms
dc.subject Support vector machines
dc.subject Μηχανισμοί μάθησης μέσω παρακολούθησης
dc.subject Μηχανές υποστήριξης διανυσμάτων
dc.title Classification of event related potentials of error- related observations using support vector machines el
heal.type journalArticle
heal.classification Medicine
heal.classification Medical physics
heal.classification Ιατρική
heal.classification Ιατρική φυσική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85083001
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρική φυσική
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2008009003
heal.identifier.secondary DOI: 10.1007/978-3-642-41016-1_5
heal.language en
heal.access campus
heal.publicationDate 2013
heal.bibliographicCitation Asvestas, P., Ventouras, E., Karanasiou, I. and Matsopoulos, G. (2013) Classification of event related potentials of error- related observations using support vector machines. "Communications in Computer and Information Science", 384, p.40-49 en
heal.abstract The aim of this paper is to present a classification method that is capable to discriminate between Event Related Potentials (ERPs) that are the result of observation of correct and incorrect actions. ERP data from 47 electrodes were acquired from eight volunteers (observers), who observed correct or incorrect responses of subjects (actors) performing a special designed task. A number of histogram-related features were calculated from each ERP recording and the most significant ones were selected using a statistical ranking criterion. The Support Vector Machines algorithm combined with the leave-one-out technique was used for the classification task. The proposed approach discriminated the two classes (observation of correct and incorrect actions) with accuracy 100%. The proposed ERP-signal classification method provides a promising tool to study observational-learning mechanisms in joint-action research and may foster the future development of systems capable of automatically detecting erroneous actions in human-human and human-artificial agent interactions. en
heal.publisher Springer el
heal.journalName Communications in Computer and Information Science en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: chp%3A10.1007%2F978-3-642-4101 ...
    Μέγεθος: 767.9Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες