Εμφάνιση απλής εγγραφής

dc.contributor.author Λουκάς, Κωνσταντίνος el
dc.contributor.author Κωστόπουλος, Σπύρος el
dc.contributor.author Τανογλίδη, Άννα el
dc.contributor.author Γκλώτσος, Δημήτρης el
dc.contributor.author Σφήκας, Κωνσταντίνος el
dc.date.accessioned 2015-06-06T16:53:49Z
dc.date.available 2015-06-06T16:53:49Z
dc.date.issued 2015-06-06
dc.identifier.uri http://hdl.handle.net/11400/15340
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.hindawi.com en
dc.subject Καρκίνος του μαστού
dc.title Breast cancer characterization based on image classification of tissue sections visualized under low magnification en
heal.type journalArticle
heal.classification Medicine
heal.classification Oncology
heal.classification Ιατρική
heal.classification Ογκολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unesco6/320713
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ογκολογία
heal.contributorName Κάβουρας, Διονύσιος el
heal.identifier.secondary DOI: 10.1155/2013/829461
heal.language en
heal.access campus
heal.publicationDate 2013
heal.bibliographicCitation Loukas, C., Kostopoulos, S., Tanoglidi, A., Glotsos, D., Sfikas, C. et al. (2013) Breast cancer characterization based on image classification of tissue sections visualized under low magnification. "Computational and Mathematical Methods in Medicine", 2013 en
heal.abstract Rapid assessment of tissue biopsies is a critical issue in modern histopathology. For breast cancer diagnosis, the shape of the nuclei and the architectural pattern of the tissue are evaluated under high and low magnifications, respectively. In this study, we focus on the development of a pattern classification system for the assessment of breast cancer images captured under low magnification (×10). Sixty-five regions of interest were selected from 60 images of breast cancer tissue sections. Texture analysis provided 30 textural features per image. Three different pattern recognition algorithms were employed (kNN, SVM, and PNN) for classifying the images into three malignancy grades: I-III. The classifiers were validated with leave-one-out (training) and cross-validation (testing) modes. The average discrimination efficiency of the kNN, SVM, and PNN classifiers in the training mode was close to 97%, 95%, and 97%, respectively, whereas in the test mode, the average classification accuracy achieved was 86%, 85%, and 90%, respectively. Assessment of breast cancer tissue sections could be applied in complex large-scale images using textural features and pattern classifiers. The proposed technique provides several benefits, such as speed of analysis and automation, and could potentially replace the laborious task of visual examination. en
heal.journalName Computational and Mathematical Methods in Medicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες