Εμφάνιση απλής εγγραφής

dc.contributor.author Μάγος, Δημήτριος el
dc.contributor.author Μούρτος, Ιωάννης el
dc.contributor.author Appa, Gautam M. en
dc.date.accessioned 2015-06-06T17:00:49Z
dc.date.available 2015-06-06T17:00:49Z
dc.date.issued 2015-06-06
dc.identifier.uri http://hdl.handle.net/11400/15342
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://link.springer.com/journal/10107 en
dc.subject Alldifferent predicate
dc.subject Complexity
dc.subject Convex hull
dc.subject Separation
dc.subject Διαφορικό κατηγόρημα
dc.subject Πολυπλοκότητα
dc.subject Κυρτό περίβλημα
dc.subject Διαχωρισμός
dc.title A polyhedral approach to the alldifferent system en
heal.type journalArticle
heal.classification Computer science
heal.classification Mathematics
heal.classification Πληροφορική
heal.classification Μαθηματικά
heal.classificationURI http://skos.um.es/unescothes/C00750
heal.classificationURI http://skos.um.es/unescothes/C02437
heal.classificationURI **N/A**-Πληροφορική
heal.classificationURI **N/A**-Μαθηματικά
heal.identifier.secondary DOI: 10.1007/s10107-010-0390-6
heal.language en
heal.access campus
heal.recordProvider Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. el
heal.publicationDate 2012-04
heal.bibliographicCitation Magos, D., Mountos, I. and Appa, G. (2012) A polyhedral approach to the alldifferent system. "Mathematical Programming", 132 (1-2), p. 209-260. Available from: http://link.springer.com/article/10.1007%2Fs10107-010-0390-6 [Accessed: 06/06/2015]. en
heal.abstract This paper examines the facial structure of the convex hull of integer vectors satisfying a system of alldifferent predicates, also called an alldifferent system. The underlying analysis is based on a property, called inclusion, pertinent to such a system. For the alldifferent systems for which this property holds, we present two families of facet-defining inequalities, establish that they completely describe the convex hull and show that they can be separated in polynomial time. Consequently, the inclusion property characterises a group of alldifferent systems for which the linear optimization problem (i.e. the problem of optimizing a linear function over that system) can be solved in polynomial time. Furthermore, we establish that, for systems with three predicates, the inclusion property is also a necessary condition for the convex hull to be described by those two families of inequalities. For the alldifferent systems that do not possess that property, we establish another family of facet-defining inequalities and an accompanied polynomial-time separation algorithm. All the separation algorithms are incorporated within a cutting-plane scheme and computational experience on a set of randomly generated instances is reported. In concluding, we show that the pertinence of the inclusion property can be decided in polynomial time. en
heal.publisher Shapiro, Alexander en
heal.journalName Mathematical Programming en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: A polyhedral approach to the ...
    Μέγεθος: 823.1Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες