dc.contributor.author | Μούσας, Βασίλειος Χ. | el |
dc.contributor.author | Κατσικάς, Σωκράτης Κ. | el |
dc.contributor.author | Λαϊνιώτης, Δημήτριος Γ. | el |
dc.date.accessioned | 2015-06-06T17:21:03Z | |
dc.date.available | 2015-06-06T17:21:03Z | |
dc.date.issued | 2015-06-06 | |
dc.identifier.uri | http://hdl.handle.net/11400/15347 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.tandfonline.com/doi/abs/10.1081/SAP-200064462#.VXMn9c_tlBc | el |
dc.subject | Stochastic models | |
dc.subject | Adaptive algorithms | |
dc.subject | Προσαρμοστικοί αλγορίθμοι | |
dc.subject | ALF | |
dc.subject | EKF | |
dc.subject | Failure prediction | |
dc.subject | Πρόγνωση βλαβών | |
dc.subject | Fatigue crack growth | |
dc.subject | Fatigue crack growth | |
dc.subject | Nonlinear FCG models | |
dc.subject | Μοντέλα Μη γραμμική FCG | |
dc.subject | Nonlinear prediction | |
dc.subject | Στοχαστικά μοντέλα | |
dc.title | Adaptive estimation of FCG using nonlinear state-space models | en |
heal.type | journalArticle | |
heal.classification | Engineering | |
heal.classification | Computer science | |
heal.classification | Μηχανική | |
heal.classification | Πληροφορική | |
heal.classificationURI | http://skos.um.es/unescothes/C01363 | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.classificationURI | **N/A**-Μηχανική | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh2005004376 | |
heal.identifier.secondary | ISSN: 07362994 | |
heal.identifier.secondary | DOI: 10.1081/SAP | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Πολιτικών Μηχανικών Τ.Ε και Μηχανικών Τοπογραφίας & Γεωπληροφορικής Τ.Ε. | el |
heal.publicationDate | 2005 | |
heal.bibliographicCitation | Moussas, V., Katsikas, S. and Lainiotis, D. (2005). Adaptive estimation of FCG using nonlinear state-space models. "Stochastic Analysis and Applications", 23(4), 2005. pp. 705-722. Available from: http://www.tandfonline.com/doi/abs/10.1081/SAP-200064462#.VXMn9c_tlBc. [Accessed 15/02/2007] | en |
heal.abstract | In this paper, an efficient adaptive nonlinear algorithm for estimation and identification, the so-called adaptive Lainiotis filter (ALF), is applied to the problem of fatigue crack growth (FCG) estimation, identification, and prediction of the final crack (failure). A suitable nonlinear state-space FCG model is introduced for both ALF and extended Kalman filter (EKF). Both algorithms are tested in order to compare their efficiency. Through extensive analysis and simulation, it is demonstrated that the ALF has superior performance both in FCG estimation, as well as in predicting the remaining lifetime to failure. Furthermore, it is shown that the ALF is faster and easier to implement in a parallel/distributed processing mode, and much more robust than the classic EKF. | en |
heal.publisher | Taylor & Francis, Inc | en |
heal.journalName | Stochastic Analysis and Applications | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: