Εμφάνιση απλής εγγραφής

dc.contributor.author Μάγος, Δημήτριος el
dc.contributor.author Μούρτος, Ιωάννης el
dc.date.accessioned 2015-06-06T18:01:57Z
dc.date.available 2015-06-06T18:01:57Z
dc.date.issued 2015-06-06
dc.identifier.uri http://hdl.handle.net/11400/15354
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.tandfonline.com en
dc.subject Planar assignment
dc.subject Polyhedral combinatorics
dc.subject Επίπεδη ανάθεση
dc.subject Πολυεδρική συνδυαστική
dc.title A characterization of odd-hole inequalities related to Latin squares en
heal.type journalArticle
heal.classification Technology
heal.classification Computer programming
heal.classification Τεχνολογία
heal.classification Προγραμματισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://skos.um.es/unescothes/C00749
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Προγραμματισμός
heal.identifier.secondary DOI: 10.1080/02331934.2011.611510
heal.language en
heal.access campus
heal.publicationDate 2013
heal.bibliographicCitation Magos, D. and Mourtos, I. (2013) A characterization of odd-hole inequalities related to Latin squares. "Optimization", 62 (9), p.1169-1201 el
heal.abstract A Latin square is an n × n matrix where in each row and each column every number between 1 and n appears exactly once. A Latin square can be described by a binary vector with n 3 components, and the Latin square polytope (P n;I) is the convex hull of such binary vectors. We study the facial structure of P n;I by examining valid inequalities induced by the odd holes of the associated intersection graph. In particular, we define the concept of the lifting set of an odd hole, present an efficient algorithm for identifying it and derive tight bounds on the left-hand side coefficients of an induced odd-hole inequality. In this way, we are able to characterize the class of odd holes that yield maximal inequalities without lifting and show that, for sufficiently large n, they are facet-defining for P n;I. This outcome unifies and generalizes previous results, with respect to the classes of facets for P n;I, presented in the literature. Computational experience regarding the use of (lifted) odd-hole inequalities as cutting planes is reported. en
heal.journalName Optimization en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες